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Abstract—In orthogonal frequency division multiplexing
(OFDM) based communication systems multiple carriers having
different frequencies are used to transmit different data at the
same time. Complex values that describe attenuation on different
subcarriers are called channel state information (CSI). This paper
describes a novel method of two dimensional (2D) direction of
arrival (DOA) estimation for uniform circular array (UCA) using
CSI, available in transmitted OFDM signal. Firstly, using the
fact that CSI among subcarriers comprises phase shift due to
DOA and Time-of-Flight (ToF) number of antennas is virtually
extended. Secondly, beamspace transform is applied to UCA’s
array manifold for CSI smoothing to virtually extend the number
of observations. Finally, multiple signal classification (MUSIC)
algorithm is applied on smoothed data for 2D DOA estimation.
Comprehensive results and analysis are provided to show the
superior performance of the proposed algorithm compared to
the previous literature.

I. INTRODUCTION

Estimation of direction of arrival (DOA) is a key task in
a lot of fields like sonar, radar, seismology etc. for almost
a century. In last few decades with development of wireless
communications localizing mobile units became a problem
too. Typical localizing schemes can be classified in three
types: triangulation, scene analysis, and proximity [1]. In
[2] authors proposed a novel approach called FILA. It is
implemented on orthogonal frequency division multiplexing
(OFDM) system using scene analysis. It exploits channel
state information (CSI), a complex values that describe at-
tenuation on every subcarrier, to build a propagation model
and a fingerprinting system at the receiver. While in [3] a
novel location signature CSI-MIMO incorporates CSI together
with Multiple Input Multiple Output (MIMO) technology for
fingerprinting. MIMO is a smart antenna technology that
uses multiple antennas on the transmitting and receiving side,
using which it is possible to apply DOA estimation, which is
triangulation type, in wireless communications. ArrayTrack [4]
is one of the systems which uses MIMO for DOA estimation.
ArrayTrack’s APs overhear the transmission and compute
DOA of the transmitting user based on incoming frame. SpotFi
[5] is another example of system that exploits MIMO for
DOA estimation, but it also exploits CSI that is reported by
commodity Wi-Fi card. Main disadvantage of [4] and [5] is

that they use widely studied uniform linear array (ULA) for
DOA estimation, which can provide only one dimensional
angle estimates relative to the array axis. However, nowadays
estimation of DOA in two dimensions (2D) is expected, and
planar arrays are needed in this case. Recently, more and more
advanced antenna structures have been developed to fulfill
mobile communications requirement. And it is very likely that
in the next 5th generation of mobile communications uniform
circular array (UCA) antenna structure will be used at the
base stations. Also, OFDM scheme is already deployed in 4G
network at downlink, and at uplink SC-FDMA modulation
scheme is used, which in fact is a special case of multiple
carrier modulation. So it is of high interest to develop highly
accurate 2D DOA estimation method using these features.
This paper introduces DOA estimation method in two di-
mensions, i.e. estimation of azimuth and elevation angles,
based on CSI for uniform circular array. Received signal
among antennas on UCA have different phase shifts due to
incoming DOA relative to the origin of UCA. And CSI among
subcarriers have different phase shifts due to different Time-
of-Flights (ToF). Using this fact, number of antennas in array
manifold is virtually extended. Later beamspace transform is
applied to extend the number of observations, and finally DOA
is estimated using multiple signal classification (MUSIC) [6]
algorithm.
The rest of the paper is organized as follows. In Section II sys-
tem model is described. Section III explains virtual extension
of the number of antennas, while in Section IV extension of
the number of snapshots/observations is explained. Simulation
results and conclusion are presented in Section V and VI
respectively.

II. SYSTEM MODEL

A uniform circular array is assumed, i.e. N identical and
omnidirectional antennas assumed to be uniformly distributed
over circumference of radius R. A spherical coordinate system
is used to represent azimuth and elevation angle of a plane
wave impinging on antennas from the far-field. Array elements
are situated on the xy plane, and array center is situated
at the origin of the coordinate system. Azimuth angle is
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measured counterclockwise from the x axis and elevation
angle down from the z axis. Fig 1 shows the geometry of the
array. Output of the nth array element has phase difference
ψn = ejk0Rsinθcos(ϕ−γn) [7] relative to the origin, because
nth array element is displaced from the x axis by an angle
γn = 2πn/N, n = 0, 1, . . . , N − 1, where k0 = 2π/λ is
a wavenumber, λ is a propagation speed of a planewave, ϕ
and θ are azimuth and elevation angles, respectively. Assume
that there are L plane waves impinging on the array from
L distinct directions (θ1, ϕ1), . . . , (θL, ϕL). Using complex
envelope notation [8] [9], array output vector with dimension
N × 1 can be expressed as

~x =

L∑
l=1

~a(θl, ϕl)sl + ~n (1)

where sl(t) is a complex envelope of an lth plane wave at the
array center, ~a(θl, ϕl) is a steering vector of the array towards
lth plane wave’s direction (θl, ϕl), and ~n(t) is a noise vector.

Fig. 1. UCA Structure.

Using matrix notation eq. (1) can be written as

~x = A~s+ ~n (2)

where ~n is a vector of additive white Gaussian noise (AWGN)
[10], A(Θ) is an N × L matrix of L steering vectors called
array manifold that is written as

A =
[
~a(θ1, ϕ1), . . . ,~a(θL, ϕL)

]
(3)

and steering vector is written as

~a(θ, ϕ) =
[
ψ0, . . . , ψN−1

]
(4)

In eq. (2) ~s = [α1, . . . , αL] is a vector of complex attenuations
along L paths.

III. THE CSI PROCESSING

In OFDM system data is transmitted simultaneously over
several subcarriers with different frequencies. So, in this case
eq. (2) can be written for every subcarrier as

X = [~x1, . . . , ~xK ] = A(Θ)[~s1, . . . , ~sK ] + ~n = AS + ~n (5)

where K is the number of subcarriers used by OFDM system.
Matrix X that includes column vectors ~x1, . . . , ~xK denotes
array output at every of the subcarriers, and matrix S in a
similar fashion denotes complex attenuations of every path on
every of the subcarriers. And because steering vectors don’t
change across closely spaced subcarriers [6] the array manifold
A will not change too.
In OFDM system the attenuation and phase shift at each
antenna introduced by every subchannel is represented by a
complex CSI matrix. Also, in OFDM system signal is com-
plex, i.e. it is a superposition of several sinusoids with different
frequencies. Upon impinging on the array these sinusoids pass
through the same path or, in other words, they travel with
the same ToF, and obviously ToF introduces different phase
shifts on every subcarrier (due to different frequencies). Thus,
it is obvious that CSI values among different subcarriers have
different phase shifts. In fact, column vectors ~x1, . . . , ~xK in
eq. (5) correspond to columns in CSI matrix, and observation
matrix X corresponds to the CSI matrix itself.
As an example, phase shift difference between two adjacent
subcarriers in OFDM system is

Ω(τl) = e−j2πfδτl (6)

where fδ is a frequency spacing between adjacent subcarri-
ers and τl is a ToF of an lth path. To summarize, rows in the
CSI matrix have phase shift difference due to DOA relative to
the center of the UCA, and columns have phase shift difference
due to ToF. Thus, we can rewrite CSI matrix in DOA and ToF
dependence notation as

CSI =


ΘΦ0 ΘΦ0Ω . . . ΘΦ0ΩK−1

ΘΦ1 ΘΦ1Ω . . . ΘΦ1ΩK−1

...
...

. . .
...

ΘΦN−1 ΘΦN−1Ω . . . ΘΦN−1ΩK−1

 (7)

there is azimuth angle dependence through Φn =
ejcos(φ−γn), elevation angle dependence through Θ = ejϑ,
and ToF dependence through Ω, where ϑ = k0Rsin(θ). Now,
by stacking rows of the CSI matrix in a column, we construct
modified CSI matrix

ĈSI = ~a(θ, ϕ, τ)~α (8)

which in fact is a column vector, that has steering vector
with N ×K rows

~a(θ, ϕ, τ) = First antenna︷ ︸︸ ︷
ΘΦ0, ...,ΘΦ0ΩK−1, ...,ΘΦN−1, ...,ΘΦN−1ΩK−1︸ ︷︷ ︸

Last antenna

T (9)

where ~α is a vector of attenuations along L paths. And
there are as many steering vectors as the number of sources,
and modified array manifold Â is constructed by stacking
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all steering vectors columnwise. Note, that the phase of the
complex attenuation in eq. (2) has phase shift due to DOA and
ToF absorbed into it, and will be different for every subcarrier
[5]. But here, the phase is same for all the subcarriers and
all the antennas. Thus, number of antennas in the modified
ĈSI matrix is virtually extended (for simplicity we will
denote ĈSI matrix as X̂ matrix). Main task at this step is
to extract useful information from the X̂ matrix, i.e. azimuth
and elevation angle information. MUSIC algotihm does this
through eigendecomposition of the covariance matrix X̂X̂H ,
that results in a signal and noise subspace. The first of the two
main assumptions of the MUSIC algorithm is that the number
of rows in the array manifold Â is larger than the number of
columns, i.e. number of antennas in the array is larger than the
number of sources. Which is obviously true. And the second
assumption is that the number of columns of ~µ in eq. (8) is
larger than the number of rows, which means that the number
of the observations must be larger than the number of sources.
Next section describes of CSI smoothing for UCA to extend
the number of observations.

IV. CSI-UCA SMOOTHING

Before applying CSI smoothing to extend the number of the
observations, we shall make some preprocessing on the CSI
matrix. It is needed, because CSI smoothing method in [5] is
based on the Vandermonde property of the array manifold of
the uniform linear array. Whereas in the case of UCA array
manifold is not a Vandermonde matrix. This preprocessing is
based on transforming the actual array manifold into a virtual
one which will have Vandermonde property by a beamspace
transformation.
First, we shall describe beamspace transformation for the case
where the signal impinging on the array is not complex, i.e.
there is only one carrier sinusoid. Suppose we have UCA
output in matrix notation as below

X = AS (10)

where X is an N × M UCA output matrix, A is an
N × L array manifold matrix, S is an L ×M signal sample
matrix, and M is the number of samples. Now we can transfer
arraymanifold A from element space to the beamspace by
premultiplying it with a beamformer F

X̃ = FHX = ÃS =
√
NJζ~ν(φ) (11)

where Ã = FHA is a transformed virtual array manifold.
Here azimuthal dependence is through the vector

~ν(φ) = [e−jhφ, . . . , e−jφ, ej0, ejφ, . . . , ejhφ]T (12)

and elevation angle dependence is through the matrix of
Bessel functions

Jζ = diag[Jh(ζ), . . . ,J1(ζ),J0(ζ),J1(ζ), . . . ,Jh(ζ)] (13)

where ζ = 2πR
λ sin(θ), and h is a highest order mode that

can be excited by the aperture at a reasonable strength [7].
We omit explanation of how beamformer and phase mode
is derived for brevity, but reader can find comprehensive
information of it in [11], [12] and [7].

In the complex signal case beamspace transformation is
made in a similar way, we premultiply CSI matrix by a
beamformer FH , and get transformed CSI matrix

FHX =
√
NJζ

e
−jhφ e−jhφΩ . . . e−jhφΩK−1

...
...

. . .
...

ejhφ ejhφΩ . . . ejhφΩK−1

 (14)

It can be seen that after transformation besides azimuthal
and elevation angle dependence, there is still ToF dependence
among columns too. This way it is still possible to extend
the number of antennas to get modified matrix X̂ as it was is
described in the previous section.
CSI smoothing is a mathematical trick [5], that is easier to
explain using the following example. Assume 1 is the highest
phase mode and that there are 5 subcarriers. Then CSI matrix
after transformation can be written as

C̃SI =

e−jφ e−jφΩ e−jφΩ2 e−jφΩ3 e−jφΩ4

1 Ω Ω2 Ω3 Ω4

ejφ ejφΩ ejφΩ2 ejφΩ3 ejφΩ4

 (15)

Now assuming there is two sources, this transformed C̃SI
matrix can be divided into two subarrays as



˜csi1,1 ˜csi2,3
˜csi1,2 ˜csi2,4
˜csi1,3 ˜csi2,5
˜csi2,1 ˜csi3,3
˜csi2,2 ˜csi3,4
˜csi2,3 ˜csi3,5

 =


e−jφ1 e−jφ2

e−jφ1Ω1 e−jφ2Ω2

e−jφ1Ω2
1 e−jφ2Ω2

2

1 1
Ω1 Ω2

Ω2
1 Ω2

2


[
α1 α1e

jφ1Ω2
1

α2 α2e
jφ2Ω2

2

]
(16)

Columns in the first matrix on the right hand side are the
steering vectors, and α1 and α2 are complex attenuations
along two paths. By weighing steering vectors by complex
attenuations α1 and α2 we get first subarray on the left hand
side of the eq. (16). The second subarray absorbs scaling factor
ejφΩ2 and we can write transformed CSI values of this second
subarray by weighing the steering vectors by the modified
complex attenuation αejφΩ2. Thus, values in two subarrays
are a linear combination of the same vectors (steering vectors)
and the vector of complex attenuations of the first subarray is
linearly independent of the vector of complex attenuations of
the second subarray. This way the number of antennas and the
number of independent observations is virtually extended, and
MUSIC algorithm can be straightly applied to the transformed
and smoothed CSI matrix.

V. SIMULATION RESULTS

First, we perform simulation of virtually extending number
of antennas only. We assume to have UCA with 3 omnidirec-
tional antennas only, with λ

2 element spacing. DOAs of two far
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Fig. 2. RMSE of 1000 Monte Carlo simulations without smoothing

Fig. 3. RMSE of 1000 Monte Carlo simulations with smoothing

field sources are (θ1, ϕ1) = (90◦, 51◦), (θ2, ϕ2) = (78◦, 72◦).
As it has been previously mentioned in section III, the number
of observations must be larger than the number of sources. But,
if we assume extending the number of antennas only, then
our observation matrix S has only one column, which means
we have only one independent observation. To overcome this
problem we assumed having CSI values of 10, 100 and 200
consecutive OFDM packets received at the UCA, during wich
sources are assumed to be stationary. Root mean square error
(RMSE) of DOA estimation is shown in fig 2.

Next, we perform simulations of CSI smoothing technique.
For this case we assume UCA with 16 and 19 omnidirectional
antennas, because according to [7] for beamspace transforma-
tion UCA must have at least twice the highest phase mode
number of antennas. DOAs of incoming signals are set same
as in the previous simulation. First source were assumed to
have 10ns ToF, and secound source’s ToF 90ns. The results
of 1000 Monte Carlo trials for azimuth and elevation angles
are shown in fig. 3.

VI. CONCLUSION

We proposed a novel method of 2D DOA estimation based
on CSI in OFDM for circular array. This method extracts

information about the azimuth and the elevation angles, thus
realising highly accurate two dimensional DOA estimation.
First, by noting the fact that phase shift information due to ToF
of a signal is included in complex attenuations of subcarriers
with different frequencies, the number of antennas in the array
was virtually extended. Next, by using phase mode exciation
method, CSI values were transformed from element space to
beamspace, to extend the number of independent observations,
and MUSIC algorithm was applied. Several simulations were
performed to verify the effectiveness and accuracy of the
proposed method. Provided results show that in case of only
virtually extending the number of antennas, although much
smaller number of antennas were used, proposed method still
achieved good results. Also, CSI-UCA smoothing using one
OFDM packet can achieve RMSE of less than one degree at
higher SNRs.
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