IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 1, JANUARY 2010

59

Split Table Extension: A Low Complexity LVQ
Extension Scheme in Low Bitrate Audio Coding

Jin Wang, Peilin Liu, Ji Kong, and Rendong Ying

Abstract—Embedded Algebraic Vector Quantization (EAVQ) is
a fast and efficient Lattice Vector Quantization (LVQ) scheme used
in low-bitrate audio coding. However, a defect of EAVQ is the over-
load distortion which causes unpleasant noises in audio coding.
To solve this problem, specific base codebook extension schemes
should be carefully considered. In this letter, we present a novel
EAVQ codebook extension scheme—Split Table Extension (STE),
which splits a vector into two smaller vectors: one in the base code-
book and the other in the split table. The base codebook and the
split table are designed according to the appearance probability
of quantized vectors in audio segments. Experiments on encoding
multiple audio and speech sequences show that, compared with the
existed Voronoi Extension scheme, STE greatly reduces computa-
tion complexity and storage requirement while achieving similar
coding quality.

Index Terms—Embedded algebraic vector quantization, lattice
vector quantization, split table extension, Voronoi extension.

I. INTRODUCTION

ATTIC vector quantization (LVQ) has been widely used
L in speech, audio, image, and video coding [1], [2] due to
its highly structured and efficient codebook [3]. Embedded Al-
gebraic Vector Quantization (EAVQ) is a fast and efficient LVQ
scheme that employs algebraic algorithm in the codebook de-
sign [4]. However, One defect of EAVQ is the overload distor-
tion [5] problem that the large vectors which are not included by
the base codebook will be quantized to the nearest vector inside
the base codebook with large quantization errors. This process
will introduce unpleasant noises when used in audio coding. To
solve the problem, the Voronoi extension (VE) scheme is pro-
posed in [6]. It represents a large vector outside the base code-
book with the sum of a scaled base vector and a Voronoi vector.
With this scheme, VE is able to indirectly enlarge the base code-
book to include the large vectors. VE has been applied to the
TCX codec in AMR-WB+ standard [7]. Despite its good per-
formance in audio coding, VE has two main disadvantages. One
is the complexity due to the matrix operations it employs in the
computation procedure. The other is the inflexible bit allocation
for each of the Voronoi vector components, which may incur
low coding efficiency.

Manuscript received May 31, 2009; revised September 04, 2009. First pub-
lished September 22, 2009; current version published October 21, 2009. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Saeid Sanei.

The authors are with the Department of Electronic Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China (e-mail: wangjin.jane @ gmail.
com; liupeilin@sjtu.edu.cn; johnhophen @sjtu.edu.cn; uingrd @lycos.com).

Digital Object Identifier 10.1109/LSP.2009.2032982

In this letter, we present a novel Split Table Extension (STE)
scheme. The scheme only employs simple arithmetic operations
such as addition and subtraction in the extension procedure and
uses smaller base codebook compared with VE. It also uses flex-
ible bit allocation in encoding the extension vector components.
In STE, the overloaded vector is split into two vectors. One is
in the base codebook and the other is an extension vector that is
encoded by a multilevel extension table called the split table.
Experimental results show that, compared with VE, the STE
scheme greatly reduces computational complexity and storage
requirement while having similar coding efficiency and quality.

II. REVIEW OF EAVQ AND VORONOI EXTENSION

A. REgs-Based EAVQ
The EAVQ introduced by [4] is a highly-structured LVQ
scheme which is based on the well-known rotated Gosset lattice
RFEg defined as
REs =2DgU{2Ds + (1,1,...,1)} D

where Ds = {(x1,x2,...,28) : ©; € Z, (Z?:l x;) mod 2 =
0}. The important properties of RFjg lattice are summarized as
follows:

1) All lattice points in REg are 8-dimensional vectors.

2) All 8 components of an RFEy vector have identical parity.

3) The component sum of an RFEg vector
y = {y1,92,...,ys} is multiple of 4, ie.,
(55, yi) mod 4 = 0.

Any REjg vector y can be generated by

y = [k1 ko -+ ks]GRE, 2

where k; € Z (i = 1,2---8) is the index vector of the lattice
point y and Grp, is the 8 X 8 generator matrix of REg lattice.

EAVQ spherically shapes the R Fg lattice and selects the in-
nermost 11 spheres to construct the codebook consisting of six
subsets Qo9 — Q5. It quantizes any 8-D vector into the nearest
lattice point in the codebook. This will cause the overload dis-
tortion problem when a very large vector outside the selected
spherical bound is arbitrarily quantized into a small lattice point
inside the codebook, which introduces intolerable noises when
EAVQ is used in audio coding.

B. Voronoi Extension

VE in [6] is designed to resolve the overload distortion
problem in EAVQ. In VE, the codebooks are composed of
the base codebook and the extension codebook. The base
codebook includes the lattice points in RFEg with relatively

1070-9908/$26.00 © 2009 IEEE

60

high appearance frequency, while the extension codebook is
generated by extending the base codebook using VE scheme
to include all other REjg lattice vectors. We denote the base
codebook as C', base vector as ¢ € C, extension order as 7 and
rt" order extension codebooks as C'("). The VE scheme can be
described as
C) =92"C + Vyr = U 2c+v (3)
ceC,veV
where Va- is the rth
Voronoi vector.
For a given order r, [9] defines Voronoi index vector by

order Voronoi space and v € V is the

k, = (yGgrp,) mod 2" 4)

When applied to AMR-WB+ in [7], VE uses iterations to find
r and v. It first computes k, from (4) and then determines v
from k, using an algorithm described in [8]. Knowing v, ¢ can
be calculated by

1

C=—
27‘

¥y —v) (5)
If c is in the base codebook, the Voronoi vector and the exten-
sion order are successfully found. Otherwise the extension order
r should be increased to recalculate the Voronoi vector and the
base vector. This searching process employs matrix multipli-
cation operations with high-computational complexity in each
iteration.

Voronoi vector v is encoded by its index vector k, deter-
mined in (4). [6] proved that, given extension order r, the bits
required to encode k, are r/component. This feature of VE
indicates the identical bit allocation for each vector component.
However, extension usually occurs due to the large value(s) of
only one or two vector component(s). For example, extension
should be applied to {25,1,1,1,1,1,1, 1} due to the large com-
ponent value “25”. In this case, the bits allocated for extending
small vector components “1”’s are wasteful.

III. SPLIT TABLE EXTENSION

A. Basic Principles

In the previous section, it is noted that VE employs matrix
multiplication operations in the searching of r and v, which
requires high computational effort. We reduce the complexity
by proposing the STE method that a large RFEs lattice vector y
is represented by the sum of two smaller vector ¢ and s, denoted
as:

y=c+s (6)

where the vector s is defined as the split vector and c is the
remainder with property |¢| < |y|. The aim of STE is to find
some s to make ¢ be an RFEg vector included in the base code-
book. Observing that ¢ = y — s, to make all eight compo-
nents of ¢ have identical parity and (Z?:I ¢i) mod 4 = 0,
s = {s1, $2,..., s} should also be an RFg vector.

IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 1, JANUARY 2010

REj; Lattice Point
-~

Base Vector Split Vector

p
1 S l S2) " | Sg

Split Table

Base Codebook

Fig. 1. Encoding REs Vector with STE.

Moreover, to achieve more flexibility in bit allocation for
each vector component, each component of vector s can be
changed independently. (Zle ¢i) mod 4 = 0 always holds
no matter which components of s changes. Therefore, we make
simod4d=0,i=1,2,...,8.

To make coding more efficient, the sign information of y is
stored in c. That is, the components of ¢ have the same polarity
(sign) with those of y, and |¢;| < |y;|. Denoted as:

yi = ¢ + |sil ¥ >0, y;mod2 =0, ¢; >0
yi = ¢ — |si Y; <0, y;mod2 =0, ¢; <0
yi=ci+|s|+1 3 >0, y;mod2=1,¢; >0
yi=c —lsi|+1 v <0,ymod2=1,¢ <0

(N

where ¢ = 1,2,...,8. For example, if y =
{-31,1,1,1,1,1,1,1} and s = {—28,0,0,0,0,0,0,0}, c will
be {—3,1,1,1,1,1,1,1} with the same parity and polarity of
y. To decode y, only ¢ and the absolute value of s are required
since the polarity of s and y can be determined by that of c.

In (7), the vector {1,1,1,1,1,1,1,1} is subtracted from
an even vector y before applying STE. This procedure is
used to avoid sign information losing for even vectors. For
example, let y = {20,20,20,0,0,0,0,0}, if it is split into
s = {20, 20,20,0,0,0,0,0} and ¢ = {0,0,0,0,0,0,0,0}, the
sign information of y is missing. Therefore, it should be first
converted to an odd vector {19,19,19,-1,—-1,—-1,—-1, -1}
and then split to s = {16,16,16,0,0,0,0,0}, ¢ =
{3,3,3,—-1,—1,—1,—1, —1} to keep the sign information.

B. Base Codebook and Split Table Design

The two vectors ¢ and s in STE are encoded by STE base
codebook and the split table respectively as shown in Fig. 1.

In EAVQ, the spherical shaping of RFEg lattice and the
codebook selection are based on the assumption that all vectors
are 1.i.d zero-mean Gaussian [4]. However, the vectors in real
source often behave non-Gaussian. Therefore, we further inves-
tigate the appearance probability of the codebook vectors in 85
MPEG2-standardized audio and speech sequences to construct
the base codebook for STE.

The two Prob columns of Table I list the appearance proba-
bility of RFEg vectors in test sequences, including all the vec-
tors in the innermost six [Fg spheres and some vectors in other
spheres. The origin {0,0,0,0,0,0,0,0} has ultra-high appear-
ance probability which dominates all other vectors, therefore
it is eliminated from the probability statistics. The vectors are
listed and stored in the form of leader, which is defined as a
positive vector that can be used to generate other vectors from
appropriate permutations or sign alternation of the vector com-
ponents. The number of vectors that can be generated from

WANG et al.: SPLIT TABLE EXTENSION

TABLE I
REg LATTICE VECTOR APPEARANCE PROBABILITY
AND BASE CODEBOOK USED IN STE

Leader Prob. | Category Leader Prob. | Category
’ % | Subset H I %o | Subset
0,0,0,0,0,0,0,0 SL, Qo 53,1,1,1,1,1,1 1.74 SL, Q3
2,2,0,0,0,0,0,0 | 21.48 | SL, Q1 3,3,3,3,1,1,1,1 1.19 EL, Q3
1,1,1,1,1,1,1,1 | 21.49 | EL, Q1 6,2,2,2,0,0,0,0 0.92 X, X
4,0,0,0,0,0,0,0 | 0.62 SL, @1 4,4,4,0,0,0,0,0 0.04 X, X
2,2,2,2,0,0,0,0 | 9.63 SL, Q2 4,42222,0,0 0.00 X, X
3,1,1,L,L,L1,1 | 9.09 EL, Q2 5,3,3,1,1,1,1,1 1.24 SL, Q3
42,2,0,0,00,0 | 492 SL, Q2 3,3,3,3,3,1,1,1 0.18 EL, X
22222200 | 223 xt, X 7,1,1,1,1,1,1,1 0.22 SL, Q3
3,3,1,1,1,1,1,1 6.37 EL, Q3 5,5,1,1,1,1,1,1 0.27 SL, Q3
4,4,0,0,0,0,0,0 | 042 SL, Q2 3,3,3,3,3,3,1,1 0.05 EL, X
42222000 | 3.38 X, X 8,0,0,0,0,0,0,0 0.07 SL, Q2
22222222 | 022 X, X 3,3,3,3,3,3,3,1 0.53 EL, Q3
51,1,1,1,1,1,1 1.11 SL, Q3 3,3,3,3,3,3,3,3 0.35 EL, Q3
333,1,1,1,1,1 | 213 EL, Q3 91,1,1,1,1,1,1 0.13 SL, Q3
6,2,0,0,0,0,00 | 0.83 SL, Q2 11,1,1,1,1,1,1,1 | 0.56 SL, Q3
44220000 | 141 X, X 13,1,1,1,1,1,1,1 | 0.35 SL, Q3
42222220 | 073 X, X

tX means the leader does not belong to any leader category or any codebook
subset.

the leader is the size of the leader. For example, the vectors
{3,1,1,-1,1,1,1,1} and {1,1,—1,1,-3,1,—1,1} have the
same leader {3,1,1,1,1,1,1, 1} whose size is 1024.

From the statistics in Table I, the final base codebook is con-
structed. The 23 leaders in the base codebook are composed
of 2 categories: the Essential Leaders (EL) and the Subsidiary
Leaders (SL). They are further divided into 4 subsets Qq, Q1,
Q@2 and Q3 with size 1, 256, 4096, and 65536 respectively. The
two Category/Subset columns in Table I indicate the leader cat-
egory as well as the codebook subset for each leader.

ELs include all the leaders with component value 1 or 3. From
(7), ¢; can be odd and less than 4 by choosing appropriate s;,

denoted as
s
Ci =Y — S = 3

This feature makes the selection of ELs necessary since they
guarantee that base vector can be found for every lattice
vector after applying STE. ELs with high appearance prob-
ability are stored directly in the base codebook while ELs
{3,3,3,3,3,1,1,1} and {3,3,3,3,3,3,1,1} which have rel-
atively low appearance probability are stored in the form of
swapping the digit “3” and “1” of ELs {3,3,3,3,1,1,1,1,1}
and {3,3,1,1,1,1,1,1,1}.

The remaining leaders in the base codebook are SLs which
are selected based on the following three principles.

1) The SLs should be the leaders with relatively high appear-
ance probability in Table 1.

2) The total size of the leaders selected for each codebook
subset should not exceed the size of that codebook subset.

3) Some even leaders with high appearance probability
can be eliminated from the base codebook because they
can be converted to an odd base vector by subtracting
{1,1,1,1,1,1,1,1}, such as {2,2,2,2,2,2,0,0}.

The absolute split vector |s| is encoded by the split table. Pre-
vious discussion about VE mentions that the identical bit alloca-
tion for each component of Voronoi vector incurs inflexibility.
Therefore, we propose that the 8 components of the split vector

if y; mod4 =1

if y; mod 4 = 3. ®)

61

TABLE II
SPLIT TABLE

index m split value |s;|
r=0]r=1[r=2]r=3]r=4]r=---
0 0 4 8 16 32
1 12 20 36
2 24 40
3 28 44
4 N/A N/A 48
5 N/A 52
[N/A 56
7 60

s are independent encoded by the split table with different bit
allocation.

Since s; mod 4 = 0, the split table should include all the
non-negative split values which are multiple of 4. Furthermore,
since probability decreases with the increasing order of the split
values, it is reasonable to design a multilevel split table in which
the small split values require less bits and large split values re-
quire more. Table II shows the split table used in STE. The abso-
lute split vector component |s;| is represented by the encoding
of its order r and index m. r is encoded in the unary code, i.e.,
the codeword contains r bits “1”” ahead of one bit “0”. The index
is encoded directly by » — 1 bits (For » = 0 and » = 1, no bits
are used to encode index). Consequently, total bits used to en-
code a split value is 2r (For r = 0, only 1 bit is needed). Note
that the order and the index can be different for each split vector
component according to its value. This feature provides an ef-
ficient encoder especially for the vectors containing only a few
large components. The small vector components do not need ex-
tension, therefore the split vector components for them can be
encoded with only 1 bit “0” each.

A further investigation of the split table shows that the split
values for a given order r > 1 are in the interval [2"T1, 2" +2),
Therefore, we can keep track of the » and m when searching
the split values and it is unnecessary to keep the split table in
the memory.

The encoding of the split vector can be illustrated by an
example that y = {20,4,4,4,4,4,4,4}. We calculate that
ls] = {16,0,0,0,0,0,0,0} and ¢ = {3,3,3,3,3,3,3,3}.
The first component value of split vector is 16 which requires
6 bits to encode (r = 3). The remaining components are
all 0 requiring 1 bit each. Consequently, the total bits re-
quired to encode the split vector are 1 (the parity information)
+6 +1 x 7 = 14. But for VE, it can be calculated that » = 2
and 2 x 8 + 2(encoding the order r) = 18 bits are required to
encode the Voronoi vector.

The above example shows that, some large vector compo-
nents may consume more bits in STE compared with VE due to
the higher extension order, but if the remaining components are
small and require low-order or no extension, the total bits con-
sumed by the vector can be saved. In general cases, our method
is able to achieve similar coding efficiency compared with VE.

C. STE Searching Algorithm

The searching algorithm employed by STE aims to quickly
find the s, r and m for y to make c a base codebook vector,
which is illustrated as follows.

62

TABLE III
COMPUTATIONAL COMPLEXITY/AVERAGE BITS ALLOCATION/MSE/SNR/
MEMORY REQUIREMENTS USING STE AND VE

i VE [STE
average operations per vector add: 112 times | add: 34 times
shift: 82 times shift: 0 times
Leader 37 23
Memory(Bytes) 1132 904
bits/vector 22.941 22.885
MSE 0.31 0.34
SNR 20.38 20.12

1) Begin: Set |s;] = O and ¢; = y; fori = 1,2,...,8. Also
set the initial extension order and index for each split value:
T = 0, m,; = 0.

2) If c is in the base codebook defined in Table I, stop the
iteration, encode c by its base codebook index and encode
s; by r; and m; forz = 1,2,...,8. Otherwise go to 3).

3) Find all 7 of ¢; > 4. Increase corresponding |s;| by 4. If
the increased |s;| < 2712 increase m; by 1, otherwise
increase r; by 1 and set m; = 0.

4) Calculate the new c by (7) and go to 2).

For example, assume that y = {11,—1,-7,1,1,—1,7,1}.
The STE iteration generates a series of |[s|, ie.,
{4,0,4,0,0,0,4,0}, {8,0,4,0,0,0,4,0}, a series of r,
ie, {1,0,1,0,0,0,1,0}, {2,0,1,0,0,0,1,0} and a series
of m, i.e., {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}. Finally
c={3,-1,-3,1,1,—1,3,1} which is in the base codebook.

In this algorithm, only addition and subtraction operations are

required to determine s and c, which require ultra-low compu-
tational complexity.

IV. PERFORMANCE EVALUATION OF STE

We compare STE with VE to evaluate its performance in
three aspects: computational complexity, storage requirement
and quality.

Experiments are based on MPEG2-standardized testing se-
quences selected outside the training database, including three
men’s voices, three women’s voices, seven music, and 13 sym-
phony sequences sampled at 16 kHz. We incorporate the STE
to TCX codec of AMR-WB+ frame to replace the original VE
scheme. In this frame, the input sequences are first transformed
to FFT domain and then quantized and encoded by VE-based or
STE-based LVQ [7].

We evaluate the computational complexity of VE and STE in
the term of the operations they employ. The matrix multiplica-
tion operations in calculating the Voronoi vector can be mea-
sured in the term of add and shift operations. Our STE scheme
only employs add operations. The second row of Table III gives
the average times employed by STE and VE to encode per vector
in AMR-WB+ frame. The result shows that STE has ultra-low
computational complexity compared to VE.

The third row of Table III indicates STE has fewer leaders
in the base codebook compared with VE. Therefore, STE also

IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 1, JANUARY 2010

5r

45F B STE

4+ VE
35

3
25

2
1540

1 3 5 7 9 11 13 15 17 19 21 23 25

Fig. 2. Comparison of PESQ score at 24.0 kbps of 26 test sequences between
AMR-WB+ with VE and STE.

uses less memory space than VE as shown in the fourth row of
Table III.

For the coding quality evaluation, we first compare the av-
erage bits required by VE and STE to encode per vector. The
result is shown in the fifth row of Table III. The sixth and the
seventh row of Table III compare the MSE and SNR respectively
between AMR-WB+ with VE and STE. Fig. 2 shows the PESQ
scores for AMR-WB+ with VE and STE. The experiments il-
lustrate that STE achieves similar coding quality compared with
VE.

V. CONCLUSION

We present a practical Split Table Extension scheme aiming
at resolving the problem of overload distortion in EAVQ frame.
The STE scheme represents an overloaded lattice vector by the
sum of the base vector and the split vector. Bit allocation for the
split vector depends on the extension order of each vector com-
ponent and can be highly flexible. The algorithm of searching
the extension order and the split vector has ultra-low compu-
tational complexity. Experiments of applying STE to low-bi-
trate audio coding frame show that the presented scheme greatly
reduces the computational complexity and storage requirement
while having similar coding quality compared with Voronoi ex-
tension scheme.

REFERENCES

[1] D. G. Jeong and J. D. Gibbson, “Lattice vector quantization for image
coding,” in ICASSP-89, 1989, vol. 3, pp. 1743-1746.

[2] L.H. Fonteles and M. Antonini, “Lattice vector quantization for normal
mesh geometry coding,” in ICASSP-06, 2006, vol. 2, pp. 513-516.

[3] A. Vasuki and P. T. Vanathi, “A review of vector quantization tech-
niques,” IEEE Potentials, , vol. 25, pp. 39—47, 2006.

[4] M. Xie and J. P. Adoul, “Embedded algebraic vector quantization
(EAVQ) with application to wideband speech coding,” in /CASSP-96,
1996, vol. 1, pp. 240-243.

[5] R. M. Gray and D. L. Neuhoff, “Quantization,” /EEE Trans. Inform.
Theory, vol. 44, no. 6, pp. 2325-2383, 1998.

[6] S. Ragot, B. Bessette, and R. Lefebvre, “Low-complexity multi-rate
lattice vector quantization with application to wideband TCX speech
coding at 32 kbit/s,” in ICASSP-04, 2004, vol. 1, pp. 510-514.

[7]1 3GPP-26290, Extended Adaptive Multi-Rate—Wideband (AMR-
WB+) Codec: Transcoding Functions 3GPP Organization, 2005.

[8] J. H. Conway and N. J. A. Sloane, “Fast quantizing and decoding algo-
rithms for lattice quantizers and codes,” IEEE Trans. Inform. Theory,
vol. 28, pp. 227-232, 1982.

[9] B. Bessetee, S. Ragot, and J. P. Adoul, “Method and System for Multi-
Rate Lattice Vector Quantization of a Signal,” U.S. Patent Appl. 2005/
0285764 Al, 2005.

