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Multidimensional Scaling-Based TDOA Localization
Scheme Using an Auxiliary Line

Wuyang Jiang, Changqing Xu, Ling Pei, and Wenxian Yu

Abstract—This work deals with source localization with time-
difference-of-arrival (TDOA) measurements in two-dimensional
(2-D) scenarios. Although the celebrated two-step weighted least
squares (2WLS) method is quite successful, its drawback lies in
an ill-conditioning problem when the sensor array is quasi-linear.
This work presents a multidimensional scaling (MDS)-based local-
ization scheme. Based on the subspace analysis of the scalar
product matrix, an auxiliary line is defined in the plane, close to
the global minimizer of the cost function. Then, the minimizer on
the auxiliary line is found as the estimation of the source position.
Simulations show that the proposed scheme achieves high localiza-
tion accuracy for all kinds of sensor arrays including quasi-linear
arrays.

Index Terms—Multidimensional scaling (MDS), source localiza-
tion, subspace, time-difference-of-arrival (TDOA).

I. INTRODUCTION

F INDING the position of a single passive source using
time-difference-of-arrival (TDOA) measurements from an

array of spatially separated sensors at known locations has been
an important problem in radar, sonar, mobile communications,
multimedia, and wireless sensor networks [1]. The localization
problem is usually converted into the minimization problem
of cost functions [2]–[4]. Due to its accuracy and computa-
tional efficiency, the two-step weighted least squares (2WLS)
method [5]–[7] minimizing the spherical least squares error
function is the most widely used method. However, 2WLS
method faces an ill-conditioning problem that the measure-
ment matrix to be inverted will become ill-conditioned when
the array is quasi-linear, resulting in large estimation error [6].

Recently, a new cost function for TDOA localization has
been introduced, defined as the norm of the difference matrix
between two scalar product matrices in the multidimensional
scaling (MDS) framework [8]. The first application of the MDS
framework to localization problems is for time-of-arrival (TOA)
measurements [9], [10]. It is extended to TDOA cases in [8].
However, the solution to the minimization problem of the cost
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function in [8] again needs to invert a measurement matrix and
has the same ill-conditioning problem as 2WLS method does.

In this work, we present a new solution to the minimization
problem of the MDS-based cost function. First, we develop the
subspace analysis of the scalar product matrix. Based on the
subspace analysis, we define an auxiliary line in the plane that
is close to the global minimizer of the cost function. Then, we
find the minimizer of the cost function on the auxiliary line and
define it as the estimation of the source position. To describe the
performance of the proposed method, we divide the category of
arbitrary arrays [5] into two subcategories: quasi-linear arrays
and normal arrays. Simulations show that the estimation error
of the proposed method is slightly larger than that of 2WLS
method for normal arrays, equal to 2WLS method for linear
arrays, and significantly smaller than 2WLS method for quasi-
linear arrays.

The notations used in this letter are defined as follows.
Boldface lowercase letter a and boldface uppercase letter A
represent vector and matrix, respectively. 1N and 0N stand for
N dimensional column vectors of all ones and all zeros, respec-
tively. diag (a1, . . . , aN ) stands for diagonal matrix whose
entries are a1, . . . , aN . IN stands for N ×N identity matrix.
Ȧ and Ä stand for first- and second-order derivatives of A with
respect to t, respectively. E {·} is the expectation operator. ‖·‖
stands for Euclidean norm of a vector. � stands for Schur prod-
uct. Finally, r (·), tr (·), (·)T, and ‖·‖F stand for rank, trace,
transpose, and Frobenius norm of a matrix, respectively.

II. SYSTEM MODEL

Consider an array of M ≥ 5 sensors and a single source in
a two-dimensional (2-D) plane. Denote the known position of
the mth sensor by um = [xm, ym]

T, m = 1, . . . ,M . Assign the
first sensor as the reference. Denote the unknown position of
the source by u = [x, y]

T, whose true value is u0 = [x0, y0]
T.

Other definitions are shown in Table I. Note that dm, dm1, d, Z,
and B are functions of u. When u = u0, they reach their true
values.

By multiplying the signal propagation speed, the TDOA
measurement converts to the range difference measurement
d̂m1, which is modeled as d̂m1 = d0m1 + qm, m = 1, . . . ,M ,
where qm, m = 2, . . . ,M is the measurement noise of the
range difference, and q1 = 0. Assume E {qm} = 0, m =
2, . . . ,M .

Since B = ZTDZ, the (i,j)th entry of B can be expressed as

[B]i,j =
1

2
(di1 − dj1)

2 − 1

2

[
(xi − xj)

2
+ (yi − yj)

2
]
,

1 ≤ i, j ≤ M. (1)
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TABLE I
DEFINITIONS OF SYMBOLS

If we substitute d̂m1 for dm1 in (1) 1 ≤ m ≤ M , we get the
noisy scalar product matrix B̂ ∈ R

M×M , whose (i,j)th entry is
[
B̂
]
i,j

=
1

2

(
d̂i1 − d̂j1

)2

− 1

2

[
(xi − xj)

2
+ (yi − yj)

2
]
,

1 ≤ i, j ≤ M. (2)

Note that B and B̂ are symmetric matrices. B is a function
matrix of u, whereas B̂ is a constant matrix independent of u.
The cost function with respect to u is defined as

f (u) =
∥∥∥B− B̂

∥∥∥2
F
. (3)

The û0 = [x̂0, ŷ0]
T which minimizes (3) is defined as the

estimation of the source position.

III. SUBSPACE ANALYSIS

This section presents the subspace analysis of B̂. Denote

Z2=[x−x01M ,y−y01M ,d0+q, 0.5q� q+d0 � q,1M ]
T

∈ R
5×M , Z3 = [x−x01M ,d0+q, 0.5q� q+d0 � q,1M ]

T

∈ R
4×M ,

D2 = diag

(
1, 1,−1,

[
0 1
1 0

])
∈ R

5×5,

D3 =

⎡
⎢⎢⎣
1 + a2 0 0 ab

0 −1 0 0
0 0 0 1
ab 0 1 b2

⎤
⎥⎥⎦ ∈ R

4×4, where a, b ∈ R.

Property 1: r
(
B̂
)
≤ 5. If sensors are collinear, then

r
(
B̂
)
≤ 4.

Proof: It can be verified from (2) that

B̂ = ZT
2D2Z2. (4)

As a consequence, r
(
B̂
)
≤ r (Z2) ≤ 5.

If sensors are collinear, without loss of generality we assume
ym − y = a (xm − x) + b, a, b ∈ R, m = 1, . . . ,M . Then (4)
becomes

B̂ = ZT
3D3Z3. (5)

As a consequence, r
(
B̂
)
≤ r (Z3) ≤ 4. �

Property 2. If r
(
B̂
)
= 5, or if sensors are collinear and

r
(
B̂
)
= 4, then B̂v = 0 implies Z1v = 0 and 1T

Mv = 0, v ∈
R

M .

Proof: If r
(
B̂
)
= 5 and B̂v = 0, denote Z2v =

[l1, . . . , l5]
T ∈ R

5. According to (4), 5 = r
(
B̂
)
≤

r
(
ZT

2

) ≤ 5. So r
(
ZT

2

)
= 5. It follows from (4) and

B̂v = 0 that ZT
2 [l1, l2,−l3, l5, l4]

T
= 0. Since r

(
ZT

2

)
= 5,

[l1, l2,−l3, l5, l4]
T
= 0, so Z2v = 0. As d̂d = d0 − d011M + q

is a linear combination of d0 + q and 1M , we have Z1v = 0
and 1T

Mv = 0.

If sensors are collinear and r
(
B̂
)
= 4 and B̂v = 0,

denote Z3v = [l1, . . . , l4]
T ∈ R

4. Following the same
procedure as above, we have

[(
1 + a2

)
l1 + abl4,

−l2, l4, abl1 + l3 + b2l4
]T

= 0. So Z3v = 0, implying
Z1v = 0 and 1T

Mv = 0. �
Remark: Besides the two cases in Property 2, there are

other cases, i.e., the case when r
(
B̂
)
= 4 but sensors are not

collinear, and the case when r
(
B̂
)
≤ 3. These cases will hap-

pen on either of the following conditions: 1) E
{
q22
}
= · · · =

E
{
q2M

}
= 0, so 0.5q� q+ d0 � q = 0; 2) q2, . . . , qM are

simultaneously appointed to particular values so that d0 + q
or 0.5q� q+ d0 � q is a linear combination of x,y,1M .
For simplicity, we assume that condition 1) is not satisfied.
Besides, since q2, . . . , qM are random variables, it is reason-
able to assume that condition 2) will not be satisfied in practice,
either. As a result, the two cases in Property 2 are the only cases

that will happen in practice. In other words, 4 ≤ r
(
B̂
)
≤ 5,

and the sufficient and necessary condition of r
(
B̂
)
= 4 is that

sensors are collinear.

IV. LOCALIZATION SCHEME DESIGN

A. Defining the Auxiliary Line

We use Z1v/1
T
Mv = [xv, yv,−dv1]

T ∈ R
3, v ∈ R

M to esti-

mate
[
x0, y0,−d01

]T
. The difference vector e1 between

them is e1 = [x− x01M ,y − y01M ,d0 + q]
T
v/1T

Mv ∈ R
3.

Define e2 = ZT
0 D · e1 =

(
B0 − d0q

T
)
v/1T

Mv ∈ R
M . Since

B̂ is the approximation of B0, and E
{
d0q

T
}
= 0, we can

use e3 = B̂v/1T
Mv ∈ R

M to be the approximation of e2. If
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v is properly chosen so that the elements of e1 are small,
then the elements of e2 and e3 should be relatively small. As
a result, ‖e3‖ should be relatively small. The term relatively
small means that the current quantity is smaller than most of
the quantities determined by all possible choices of v.

Next, we give a detailed description of ‖e3‖. Since B̂ is
symmetric, suppose the eigenvalue decomposition of B̂ is

B̂ = [v1, . . . ,vM ] diag (s1, . . . , sM ) [v1, . . . ,vM ]
T
, (6)

where v1, . . . ,vM ∈ R
M are orthonormal vectors,

s1, . . . , sM ∈ R, and |s1| ≥ . . . ≥ |sM |. Then, v can be
expressed as v = k1v1 + · · ·+ kMvM , k1, . . . , kM ∈ R.
Denote am = 1T

Mvm ∈ R, m = 1, . . . ,M . According to
Properties 1 and 2, sm = 0, Z1vm = 0, and am = 0 for
m = 6, . . . ,M . Thus, Z1v/1

T
Mv is determined by k1, . . . , k5.

Since e3 = B̂v/1T
Mv is a homogeneous function of v of

degree zero, we can assume 1T
Mv = 1. Thus

‖e3‖2 =
∥∥∥B̂v

∥∥∥2 = ‖k1s1v1 + · · ·+ k5s5v5‖2

= k21s
2
1 + · · ·+ k25s

2
5,

s.t. k1a1 + · · ·+ k5a5 = 1. (7)

Next, we deduce a necessary condition that ‖e3‖ is relatively
small. Suppose the eigenvalues of B0 are σ1, . . . , σM ∈ R,
which are ordered so that

∑
(si − σi)

2 is minimized. Then,
according to Wielandt–Hoffman Theorem [11]∑

(si − σi)
2 ≤

∥∥∥B̂−B0

∥∥∥2
F
. (8)

It can be verified from (1) and (2) that

B̂−B0 = (d0 � q) · 1T
M + 1M · (d0 � q)

T − d0q
T − qdT

0

+0.5 (q� q) · 1T
M + 0.51M · (q� q)

T − qqT.

(9)

According to (1) and (9), all of the elements of B̂−B0 are
products of q, whereas none of the elements of B0 depend on
q. As long as ‖q‖ is small enough, the sum of the squared
elements of B̂−B0 will be much smaller than that of B0. Thus∥∥∥B̂−B0

∥∥∥2
F
� ‖B0‖2F =

∑
σ2
i . (10)

It follows from (8) and (10) that
∑

(si − σi)
2 � ∑

σ2
i .

Rearrange σ2
i so that σ2

i1
≥ · · · ≥ σ2

iM
. Since r (B0) ≤ 3,

σ2
ik

= 0 for k = 4, . . . ,M . It can be verified that in most cases
σ2
i3

� 0. (The exception is when the sensors and the source
simultaneously lie on the same line. In this case, there are infi-
nite points satisfying the TDOA conditions.) As a result, in most
cases s21, s

2
2, s

2
3 are much larger than s24, s

2
5. According to (7), if

‖e3‖ is relatively small, then k21, k
2
2 , k

2
3 should be close to 0.

Denote [xv, yv]
T by

[
x0
v, y

0
v

]T
when k1 = k2 = k3 = 0. Then[

x0
v, y

0
v

]T
= k4[x,y]

T
v4 + k5[x,y]

T
v5, s.t. k4a4 + k5a5 = 1.

(11)

We conclude that, if v is properly chosen so that ‖e3‖ is rela-
tively small, then [xv, yv]

T should be relatively close to the trail

of
[
x0
v, y

0
v

]T
determined by (11).

Now, we define the auxiliary line according to (11). If

sensors are not collinear, the trail of
[
x0
v, y

0
v

]T
is a line that

TABLE II
PROPOSED LOCALIZATION SCHEME

connects [x,y]Tv4/a4 ∈ R
2 and [x,y]

T
v5/a5 ∈ R

2. This line
is defined as the auxiliary line. Since the ‖e3‖ corresponding
to û0 is relatively small, û0 should be close to the auxiliary
line. On the other hand, if sensors are collinear, according
to Properties 1 and 2, s5 = 0, Z1v5 = 0, a5 = 0, so the trail

of
[
x0
v, y

0
v

]T
degenerates into a single point of [x,y]Tv4/a4.

Call the line that sensors lie on as L1. It can be verified that
[x,y]

T
v/1T

Mv ∈ R
2 lies on L1 for all v ∈ R

M . Since the
‖e3‖ corresponding to v = v4 is relatively small, [x,y]Tv4/a4
should be the point on L1 that is relatively close to û0 compar-
ing to other points of [x,y]Tv/1T

Mv on L1. As a consequence,
û0 should be close to the line called L2 that goes through
[x,y]

T
v4/a4 and is perpendicular to L1. We define L2 as the

auxiliary line.
In summary, the auxiliary line defined above is close to û0.

As a result, the point minimizing (3) on the auxiliary line will
be a good approximation of û0.

B. Proposed Localization Scheme

The proposed localization scheme is summarized in Table II.
Note that (3) becomes a function of t when u is on the auxiliary
line. So minimization of (3) converts to root-finding of g (t), the
derivative of (3) with respect to t.

Here, we explain the meaning of u(2)
0 . Draw a circle whose

center is u1 and radius
∣∣∣d(1)1

∣∣∣. u(2)
0 is the point on the auxiliary

line which is closest to the circle, i.e., the intersections when the
circle and the auxiliary line intersect, or the orthogonal projec-
tion from the center of the circle to the auxiliary line when they
do not intersect. u(2)

0 is superior than u
(1)
0 because that, when

sensors are collinear, u(1)
0 will be confined on L1 which is far

away from û0, whereas u(2)
0 will still be close to û0.
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V. SIMULATIONS

This section presents simulation results to demonstrate the
performance of the proposed method by comparing it with
2WLS method.

Suppose that there are eight sensors and one source.
The range difference measurements that are converted from
TDOA measurements are generated by adding the zero-mean
Gaussian noises to the true values. The covariance matrix
of the noise [5] is Q = E

{
[q2, . . . , qM ]

T · [q2, . . . , qM ]
}
=

0.5σ2
(
IM−1 + 1M−11

T
M−1

)
. q1 = 0.

We present three sets of experiments corresponding to nor-
mal, linear, and quasi-linear arrays, respectively. In Set-1,
sensors and the source are uniformly distributed in the area
of [0, 100m]× [0, 100m]. In Set-2, sensors are on the line
of y = x. The x coordinates of first and eighth sensors are
25 m and 75 m, respectively, whereas the x coordinates of
the other sensors are uniformly distributed in the interval of
(25 m, 75 m). The source is uniformly distributed in the area of
[0, 50m]× [50m, 100m]. In Set-3, we have the same assump-
tion as Set-2 with one change, adding a zero-mean Gaussian
noise with variance 0.62m2 to the y coordinate of each sensor.
Let σ2 =

(
2× 0.32

)
m2.

We compare the estimation errors of three methods. The first
method is 2WLS method. We use 2WLS method for arbitrary
arrays in Set-1 and that for linear arrays in Set-2 [5]. In Set-3,

define A = [x,1M ] and h =
∥∥∥y −A

(
ATA

)−1
ATy

∥∥∥. If

h > h0, we use 2WLS method for arbitrary arrays; otherwise,
we use that for linear arrays, where h0 is the preset threshold.
We present four thresholds as h0 ∈ {0, 1, 2,∞} (unit: m).
The second method is exhaustive search to find the global
minimizer of (3). The third method is the proposed method,
where we use 10−10 m as the threshold to decide whether
a5 = 0 in Step 3 of Table II. In each set of experiments, we
conduct 10 000 experiments and record the estimation errors of
the three methods. The estimation error is defined as ‖û− u0‖,
where û is the estimation. We present the cumulative distribu-
tion function (CDF) of the estimation errors for comparison.
Note that in Set-1 the probability of the sensor array being
linear or quasi-linear is very small, so we can consider the CDF
in Set-1 as the performance for normal arrays.

Fig. 1 shows the CDF of the three methods in Set-1 (nor-
mal arrays) and Set-2 (linear arrays). Fig. 2 shows that in
Set-3 (quasi-linear arrays). We have the following conclusions.
1) The estimation error of the proposed method is slightly larger
than that of 2WLS method for normal arrays, equal to 2WLS
method for linear arrays, and significantly smaller than 2WLS
method for quasi-linear arrays. Moreover, the CDF of the pro-
posed method for quasi-linear arrays is nearly the same as that
for linear arrays. This shows that the proposed method success-
fully avoids the ill-conditioning problem. 2) The CDF of the
proposed method is close to that of exhaustive search, which
shows that the minimizer of (3) on the auxiliary line is a good
approximation of the global minimizer in the plane. 3) For
normal arrays, even the estimation error of exhaustive search is
slightly larger than that of 2WLS method. This shows that the
cost function (3) needs refinement to improve the localization
accuracy, which remains to be studied.

Fig. 1. CDFs of 2WLS method, exhaustive search, and the proposed method in
Set-1 (normal arrays) and Set-2 (linear arrays) of experiments.

Fig. 2. CDFs of 2WLS method with h0 ∈ {0, 1, 2,∞} (unit: m), exhaustive
search, and the proposed method in Set-3 (quasi-linear arrays) of experiments.

VI. CONCLUSION

This work presents an MDS-based TDOA localization
scheme using an auxiliary line, where the minimizer of the cost
function on the auxiliary line is easy to find and is close to
the global minimizer in the plane. Since the proposed scheme
does not require matrix inversions, it avoids the ill-conditioning
problem for quasi-linear sensor arrays. Future works may
include refining the cost function to improve the localization
accuracy, or extension to localization of multiple sources.

APPENDIX:
CALCULATION OF Ḃ AND B̈

Denote wm = u− um, then dm = ‖wm‖, ḋm =

pTwm/dm, d̈m =
(
1− ḋ2m

)
/dm. Ż =

[
−1MpT, ḋ

]T
, Z̈ =[

0M ,0M , d̈
]T

. Finally, Ḃ = ŻTDZ+ ZTDŻ, B̈ = Z̈T

DZ+ 2ŻTDŻ+ ZTDZ̈.
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