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This paper proposes an efficient and effective WiFi fingerprinting-based indoor localization algorithm, which uses the Received
Signal Strength Indicator (RSSI) ofWiFi signals. In practical harsh indoor environments, RSSI variation and hardware variance can
significantly degrade the performance of fingerprinting-based localization methods. To address the problem of hardware variance
and signal fluctuation inWiFi fingerprinting-based localization,we propose a novel normalized rank based SupportVectorMachine
classifier (NR-SVM). Moving from RSSI value based analysis to the normalized rank transformation based analysis, the principal
features are prioritized and the dimensionalities of signature vectors are taken into account. The proposed method has been tested
using sixteen different devices in a shopping mall with 88 shops. The experimental results demonstrate its robustness with no less
than 98.75% correct estimation in 93.75% of the tested cases and 100% correct rate in 56.25% of cases. In the experiments, the new
method shows better performance over the KNN, Näıve Bayes, Random Forest, and Neural Network algorithms. Furthermore,
we have compared the proposed approach with three popular calibration-free transformation based methods, including difference
method (DIFF), Signal Strength Difference (SSD), and theHyperbolic Location Fingerprinting (HLF) based SVM.The results show
that the NR-SVM outperforms these popular methods.

1. Introduction

With the fast growing of ubiquitous computing, the rapid
advances in mobile devices, and the availability of wireless
communication, wireless indoor positioning systems have
become very popular in recent years. Moreover leveraging
public infrastructure has many advantages such as cost effi-
ciency, operational practicability, and pervasive availability.

Various short-range radio frequency technologies are
broadly researched to address positioning task in GNSS
denied area, for instance, Radio Frequency Identification
(RFID) [1], Wireless Local Area Network (WLAN, a.k.a.
WiFi) [2, 3], Bluetooth [4, 5], ZigBee [6], Ultra Wide Band
(UWB) [7], and cellular networks [8]. All these means are
high potential alternatives to indoor positioning. Meanwhile,
indoor localization based on signals of opportunity (SoOP) is
still a challenging task, since it requires stable interior wireless
signals and adequate adaptation of the signals which are not
originally designed for positioning purpose.

Fingerprinting method [9] is one of the most popu-
lar and promising indoor positioning mechanisms. It is
a technique based upon existing WiFi infrastructure and
thus requires no dedicated infrastructure to be installed. It
allows positioning by making use of signal characteristics
using the signature matching technique. Fingerprinting tech-
nique is accomplished by two steps. Firstly, it stores WiFi
signatures from different radio wave transmitters for each
reference position. Then, it compares the current signature
of a device with prerecorded signatures to find the closest
match.

Different techniques and solutions have been proposed
providing a varying mix of resolution, accuracy, stability,
and challenges. Early examples of a positioning system that
uses fingerprinting are RADAR [2] and Horus [10] systems.
Horus system is based on the probabilistic approach which
considers the statistical characteristics of the RSSIs and
their distribution. The Lognormal distribution [10], Weibull
function [5], Gaussian distribution [11], and the double peak
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Gaussian distribution [12] were used to model the RSSI
distribution.However, RADAR systemwas the first introduc-
ing the fingerprinting technique based on the deterministic
approach [13] using 𝐾-Nearest Neighbor method (KNN)
[14]. Nowadays, the use of machine learning algorithms
(ML) as in [15] has increasingly gained more popularity
in indoor navigation domain because of their witnessed
robustness; among them are Näıve Bayes classifier [16, 17],
Support Vector Machine (SVM) [17, 18], Random Forest
[18, 19], and Neural Network [20, 21]. However, their model
generalization to different user’s terminals has seldom been
considered.

RSSI fluctuation and diversiform smartphones can signif-
icantly degrade the positioning accuracy of WiFi localization
systems, as well as the patterns between training and testing
signature vectors. The WiFi device used to train the radio
map during the calibration phase may especially differ from
the ones used during the positioning phase. WiFi modules
from different providers have varying receive signal gains
which make the RSSI vary using different devices at the same
location [22]. This hardware variance problem is not only
limited to differences in the WiFi chipsets used by training
and tracking devices. Besides, it arises when the same WiFi
chipsets are connected to different antenna types and/or
packaged in different encapsulation materials.

To address this issue, several studies have proposed
methods to improve the robustness of positioning systems
against mobile devices heterogeneity. For example, the use
of an unsupervised learning [23], the Hyperbolic Location
Fingerprinting (HLF) [24], the DIFF method [25], and
the Signal Strength Difference method (SSD) [26] are the
representative ones. In this paper, a new method applying an
intermediate step of absolute RSSI value transformation by
making use of ML algorithms is proposed.

The indoor navigation market addresses various appli-
cations like Location Based Services (LBS), the guidance of
firefighters, and peoplemanagement.Moreover, it can benefit
from the room level accuracy [27–29] to extract statistical
information which can be deployed to better market to
customers, find hangouts in airports, and even most popular
shop in shopping malls, and so forth. In this work, we focus
on a room localization which is the prediction of an occupied
room in which the mobile device is currently in. This task
is more practical to attain since it does not require the floor
map of the desired indoor environment which is not always
available in practice.

To achieve a high room level accuracy based WiFi fin-
gerprinting technique, we have investigated various database
definitions and the impact of signature clustering in our
previous work [30], with respect to relevant requirement
parameters. In this paper, we propose a normalized rank
transformation based SVM approach to solve the issue of
mobile terminal diversity during the positioning phase. We
consider and compare between the performances of the
aforementioned ML algorithms and calibration-free trans-
formations to validate our solution. This approach aims
at generalizing the use of the preconstructed radio map
derived from one device to manifold devices and guarantee
localization accuracy in the meantime.

2. Normalized Rank Transformation

Aiming to mitigate the effect of signal fluctuation and
hardware variance issue, we introduce the intermediate nor-
malized rank transformation step to freeze the variation of
the RSSI. This solution has been defined principally to deal
with SVM classifier. Moving from RSSI value based analysis
to the normalized rank transformation based analysis, the
principal features are prioritized and the dimensionalities of
signature vectors are considered.

2.1. Rank Transformation. In the conventional classification
based on SVMor any otherML algorithms for fingerprinting-
based indoor localization, the features are defined as the
signal strength received from all the visible access points
(APs) to build the model. However, the received signal
strength is inherently time varying at a specific location.
Moreover, device diversity will impact both learning and
positioning phases.

In order to find the perfect match between the user
location and the predefined locations in the radio map
using SVM classifier, as well as attenuate the susceptibility
of decision boundaries to RSSI variation, the enhancement
of data learning to build a robust model is a key. The
improvement of the accuracy is related to the strong decision
boundaries between the different classes. The input variables
are redefined and the absolute RSSI values are replaced first by
their corresponding rank values. Let 𝑃1:𝑀 be the RSSI vector
of the𝑀 visible APs and 𝑆𝑖 the corresponding absolute RSSI
value of the AP(𝑖) such that

𝑃1:𝑀 = {𝑆1, 𝑆2, . . . , 𝑆𝑀} (1)

𝑃1:𝑀 = {𝑆1, 𝑆2, . . . , 𝑆𝑀} (2)

𝑆1 ≤ 𝑆2 ≤ ⋅ ⋅ ⋅ ≤ 𝑆𝑀 (3)

Ψ𝑖 = {{{
Ψ𝑖−1 + 1 for 𝑆𝑖−1 ̸= 𝑆𝑖
Ψ𝑖−1 otherwise. (4)

𝑃1:𝑀 is the new defined RSSI vector by rearranging the APs.
The rearrangement is based on (3), in which the throughputs
of received signals are in ascending order. Equation (4)
explains how to decide the rank vector. If RSSIs values are
distinct (𝑆𝑖−1 ̸= 𝑆𝑖 , 𝑖 indicates the position of the AP in the𝑀
dimensional vector), successive numbers denoted by Ψ𝑖 will
be assigned. Otherwise, the same rank will be allocated. The
initial value is equal to one andΨ𝑀 does not have to be equal
to the dimension of the initial RSSI vector. By adopting this
procedure, the most reliable APs with high RSSI are tagged
with the high rank values.

2.2. Normalized Rank Transformation. The observed set of
APs is not fixed over time at every calibration point and,
consequently, the dimension of the transformed rank vectors.
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Figure 1: Proposed system architecture.

Hence, the new formulated rank vector has to be adapted to
the varying assigned tags and needs to be normalized.

NR = {𝜆Ψ1, 𝜆Ψ2, . . . , 𝜆Ψ𝑀} such that 𝜆 = 1Ψ𝑀 (5)

NR𝑖 ∈ [0, 1] such that NR𝑖 = 𝜆Ψ𝑖. (6)

Equation (5) defines the normalized rank vector which is
denoted as NR and satisfies (6), where 𝜆 is the normalization
factor corresponding to the inverse of the highest assigned
rank Ψ𝑀 in the transformed rank vector. This normalization
step will result in keeping the prioritization of the most
reliable APs. Furthermore, it helps attenuating the effect of
the noisy points as the hyperplanes are always dominated by
the high values.

3. Proposed Method

In this section, we give more details about the proposed
approach which is composed of two main stages: the offline
stage and the online stage, as illustrated in Figure 1.

3.1. The Offline Stage. This stage consists of 3 major steps:
Step 1: data collection and association; Step 2: normalized
rank transformation; Step 3:model building and parameters
adjustment.

Step 1 (data collection and association). Selection of the
sampling Reference Point within the region of interest is
required to further collect the RSSI by a mobile node from
all the available APs. Since the propagation of the radio
signal in indoor environments is very complicated, several
observations in the same location are needful. A single
signature for each location is assigned by combining (such
as through averaging) 𝑥 sampling times. Let 𝑅 be the total
number of studied rooms and 𝑀 the total number of APs.(𝑅+1)×(𝑀+1) is the radiomapmatrixwhere each row vector
is along with its corresponding position except the first 𝑀

dimensional vector space, which contains theMACaddresses
of the𝑀 visible access points denoted by (AP)𝑅𝑀.
Step 2 (normalized rank transformation). This intermediate
step is achieved by separately considering each row vector of
the radio map.This consideration follows the described steps
in Section 2 proceeding from (1) to (6).

Step 3 (model building and parameters adjustment). The
model is built based on the new defined database and the
transformed normalized rank values. The parameters of the
learning method are tuned upon the obtained performance
using the same device that is utilized to construct the radio
map. The scrutinized criteria are the accuracy, precision, and
the recall such that

Accuracy = TP + FN
TP + FP + TN + FN

Precision = TP
TP + FP

Recall = TP
TP + FN

,
(7)

where TP, FP, TN, and FN are True Positive, False Positive,
True Negative, and False Negative, respectively. Classification
accuracy alone may hide details about the performance of
classification model. It can also be misleading in the case of
havingmore than two classes in the dataset. It gives the overall
performance of the model considering all correct predictions
divided by the total number of the datasets. However, it does
not point out if all classes are predicted equally or whether
some classes are neglected by the model. The formulations
of the precision and the recall are used in our study to
extract more information from the generated model. The
precision gives the percentage of the correctly predicted
instances among the total number of positive predictions,
while the recall is the percentage of correctly predicted
instances among the total number of positives.
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(I) Dimensionality check(1) for 𝑗 = 1, 2, . . . ,𝑀 do(2) for 𝑖 = 1, 2, . . . , 𝑁 do(3) if [(AP)𝑅𝑀](𝑗) = [(AP)Ob](𝑖)(4) Keep (RSSI)(𝑖) of Ob vector at the position (𝑗)(5) elseif 𝑖 = 𝑁 & [(AP)𝑅𝑀](𝑗) ̸= [(AP)Ob](𝑖)(6) Pad position (𝑗) with zero value(7) Loop
(II) Normalized rank transformation

(i) Keep only non-zero positions and get the new Ob vector
(ii) Rearrange RSSI value in ascending order.
(iii) Assign transformed Normalized Rank value:(1) Initialize the Normalized Rank (NR-Ob) vector(2) for 𝑘 = 2, 3, . . . , iterator do(3) if (Ob)𝑘 = (Ob)𝑘−1(4) (NR-Ob)𝑘 = Ψ𝑘−1(5) else(6) (NR-Ob)𝑘 = Ψ𝑘−1 + 1(7) Loop(8) 𝜆 = max{(NR-Ob)(1:iterator)}(9) Normalize NR-Ob vector by 𝜆 and remapping to𝑀 dimensional space(10)Consider the transformed normalized rank vector for positioning

(III) ML Classification
(IV) Return the final position

Algorithm 1: Proposed normalized rank transformation method during runtime phase.

3.2. The Online Stage. This part is fully detailed in Algo-
rithm 1. Like the offline phase, this stage consists of three
main steps: Step 1: dimensionality check; Step 2: normalized
rank transformation; Step 3: ML classification and position
estimation.

Step 1 (dimensionality check). During our database con-
struction, considering 𝑀 visible APs leads to the need of
dimensionality check. This step checks each given observed
vector at the location, which is denoted (Ob) and is to be
identified. Let 𝑁 be the total number of visible APs of (Ob)
vector. Dimensionality transformation from 𝑁 dimension
space to 𝑀 dimension space is established such that the
RSSI value at 𝑖 location in (Ob) vector corresponding to a
specific AP at 𝑗 location in (AP)𝑅𝑀 vector should be stored
at the same 𝑗 location. However, for the unseen APs, their
corresponding RSSI values are padded with zero to achieve
the same dimension in both vectors. Furthermore, it allows
patternmatching to take the same features into consideration
during the location estimation process.

Step 2 (normalized rank transformation). TheRSSI values are
transformed to the normalized rank values by keeping the𝑀
dimensional space of the observed vector.

Step 3 (ML classification and position estimation). The
transformed normalized rank vector (NR-Ob) is compared
with the trained model to find the best match. The physical
position of the model which has the best match in the new
radio map will be labeled as the estimated position.

The same RSSI transformation has been applied in both
offline and online stages. Several classifiers will be trained
using the new radio map, generating the training model to
validate our approach.

4. Classification Methods

In this section, we introduce the differentmethods adopted in
our work. All the studied algorithms fall under the category
of the supervised techniques.

4.1. Support Vector Machine. Support Vector Machine is
one of the best off-the-shelf supervised learning algorithms,
which is used for both classification and regression tasks.
It has been originally developed for binary classification
problems and further expanded to perform even multiclass
classification tasks. It uses hyperplanes to define decision
boundaries separating data points of different classes in
the case of linearly separable data. In addition, SVMs can
efficiently perform a nonlinear classification by using kernel
trick. In this case, original data are mapped into a high-
dimensional, or even infinite-dimensional, feature space [31,
32].

SVM aims to construct a hyperplane with the maximal
margin between different classes. In most cases, data are
not perfectly linearly separable, which makes the separating
hyperplane susceptible to outliers. Therefore, a restricted
number of misclassifications should be tolerated around
the margins. The resulting optimization problem for SVMs,
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where a violation of the constraints is penalized, depends on
the regularization norm considered.

4.1.1. L1 Regularization Norm for SVM. The L1 norm defines
a Support Vector Machine with a linear sum of the slack
variable to make the hyperplanes less sensitive to outliers; it
is written as

min
𝑤,𝜉,𝑏

𝐽 (𝑤, 𝜉) = 12 ‖𝑤‖2 + 𝐶 𝑁∑
𝑖=1

𝜉𝑖 (8)

Subject to: 𝑦𝑖 (𝑤𝑇𝜙 (𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖
𝑖 = 1, . . . , 𝑁, 𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁 (9)

𝑦𝑖 = sign (𝑤𝑇𝜙 (𝑥𝑖) + 𝑏) , (10)

where 𝐽 is the cost function, 𝑤 is the weight vector, and 𝐶 is
the positive regularization constantwhich defines the tradeoff
between complexity and proportion of nonseparable samples.
The problem formulation in (8) and (9) refers to the primal
optimization problem. Introducing the Lagrange multipliers𝛼𝑖 ≥ 0, we obtain the following dual problem:

max
𝛼

𝑊(𝛼)
= 𝑁∑
𝑖=1

𝛼𝑖 − 12
𝑁∑
𝑖,𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝜙 (𝑥𝑖)𝑇 𝜙 (𝑥𝑗)
Subject to:

𝑁∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶.
(11)

The optimal hyperplane is the one which maximizes the
margin, and the optimal values of 𝑤 and 𝑏 are found by
solving a constrained minimization problem using Lagrange
multipliers. The function that solves the quadratic program-
ming problem, and with the use of the positive definite
mapping function that satisfies Mercer’s condition, is such
that

𝑘 (𝑥, 𝑥𝑖) = 𝜙 (𝑥)𝑇 𝜙 (𝑥𝑖) . (12)

It also satisfies the Karush-Kuhn-Tucker (KKT) conditions.
The decision function can be expressed as

𝑦𝑖 = sign( 𝑁∑
𝑖=1

𝛼𝑖𝑦𝑖𝑘 (𝑥, 𝑥𝑖) + 𝑏) . (13)

The classification accuracy produced by SVMs may show
variations depending on the choice of the kernel function and
its parameters. Various types of kernels can be chosen:

(i) Linear:

𝐾(𝑥, 𝑥𝑖) = 𝑥𝑇𝑥𝑖. (14)

(ii) Polynomial of degree 𝑑:
𝐾(𝑥, 𝑥𝑖) = (𝛾 + 𝑥𝑇𝑥𝑖)𝑑 , 𝛾 ≥ 0. (15)

(iii) Radial basis function (RBF):

𝐾(𝑥, 𝑥𝑖) = exp(−𝑥 − 𝑥𝑖22𝛿2 ) . (16)

(iv) Sigmoid:

𝐾(𝑥, 𝑥𝑖) = tanh (𝑘1 ⋅ 𝑥𝑇𝑥𝑖 + 𝑘2)𝑑 . (17)

The KKT condition is given by

𝛼𝑖 (𝑦𝑖 (𝑤𝑇𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) = 0
𝑏𝑖𝜉𝑖 = (𝐶 − 𝛼𝑖) 𝜉𝑖 = 0. (18)

𝛼𝑖 are Lagrange multipliers and the value 𝜉𝑖 indicates the
distance of𝑥𝑖 with respect to the decision boundary since that

(i) if 𝛼𝑖 = 0, then 𝜉𝑖 = 0; therefore 𝑥𝑖 is correctly classified
and lies outside the margin;

(ii) 0 < 𝛼𝑖 < 𝐶; then (𝑦𝑖(𝑤𝑇𝑥𝑖 +𝑏)−1+𝜉𝑖) = 0 and 𝜉𝑖 = 0;
thus 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) = 1 and 𝑥𝑖 is the support vector;

(iii) 𝛼𝑖 = 𝐶; then (𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) − 1 + 𝜉𝑖) = 0 and 𝜉𝑖 ≥ 0;
therefore 𝑥𝑖 is a bounded support vector; in the case0 ≤ 𝜉𝑖 < 1, 𝑥𝑖 is correctly classified; however, for 𝜉𝑖 ≥1, 𝑥𝑖 is misclassified.

4.1.2. L2 Regularization Norm for SVM. The L2 norm defines
a Support Vector Machine which uses the square sum of
the slack variable in the objective function. The considered
optimization problem is as follows:

min
𝑤,𝜉,𝑏

𝐽 (𝑤, 𝜉) = 12 ‖𝑤‖2 + 𝐶2
𝑁∑
𝑖=1

𝜉𝑖2
Subject to: 𝑦𝑖 (𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝑖 = 1, . . . , 𝑁, 𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁.
(19)

The dual problem is expressed by introducing the Lagrange
multipliers 𝛼𝑖:

max
𝛼

𝑊(𝛼)
= 𝑁∑
𝑖=1

𝛼𝑖
− 12
𝑁∑
𝑖,𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 (𝑘 (𝑥, 𝑥𝑖) + 𝛿𝑖𝑗𝐶 )
Subject to:

𝑁∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 𝛼𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑁,

(20)

where 𝛿𝑖𝑗 is Kronecker’s delta function, in which 𝛿𝑖𝑗 = 1, for𝑖 = 𝑗, and 0 otherwise.
The KKT conditions in this case are given by

𝑦𝑖( 𝑁∑
𝑗=1

𝛼𝑗𝑦𝑗 (𝑘 (𝑥, 𝑥𝑖) + 𝛿𝑖𝑗𝑐 ) + 𝑏) − 1 = 0. (21)
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4.2. KNN. 𝐾-NearestNeighbor algorithm is a nonparametric
supervised classifier in which the target label is predicted by
finding the nearest neighbor class, considering the majority
vote of its 𝐾 neighbors. In the case of 𝐾 = 1, the target is
simply assigned to the class of its nearest neighbor.The closest
class in this work is identified using the Euclidean distance:

𝐷𝑖𝑗 = √ 𝑀∑
𝑘=1

(𝑋𝑖𝑘 − 𝑋𝑗𝑘)2, (22)

where 𝐷𝑖𝑗 is the distance between the observed point and
each signature vector in the radio map. 𝑋𝑖 corresponds to
the runtime fingerprint, 𝑋𝑗 is the offline fingerprint, and 𝑀
corresponds to the dimension of the RSSI Vector. The best
choice of the calibration points 𝐾 selected in this work has
been set equal to one, since it generated better results.

4.3. Naı̈ve Bayes. Näıve Bayes is a probabilistic classifier
based on applying Bayes theorem with strong näıve indepen-
dence assumptions between the features. Each data instance
generates a tuple 𝑋 of attribute values ⟨𝑥1, 𝑥2, . . . , 𝑥𝑀⟩. The
identification of the corresponding label from a finite set of
labels𝑅 consists onmaximumaposteriori (MAP) estimation.
The theorem states the following relationship:

𝑃 (𝑟 | 𝑥1, 𝑥2, . . . , 𝑥𝑀) = 𝑝 (𝑟) 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑀 | 𝑟)𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑀) , (23)

since 𝑃(𝑥1, 𝑥2, . . . , 𝑥𝑀) is constant given the input set:

𝑟 = argmax𝑝 (𝑟) 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑀 | 𝑟)
𝑟 = argmax𝑝 (𝑟) 𝑀∏

𝑖=1

𝑃 (𝑥𝑖 | 𝑟) , (24)

where 𝑟 is the estimated room, which is predicted given
the transformed rank values from 𝑀 APs, 𝑝(𝑟) is the prior
probability of the class “𝑟,” and 𝑃(𝑥𝑖 | 𝑟) corresponds to the
likelihood. Both terms are estimated from the training data.
We adopt the implementation of Naı̈ve Bayes considering the
fact that continuous variable with each class is distributed
according to a Gaussian distribution:

𝑃 (𝑥𝑖 = V | 𝑟) = 1
√2𝜋𝛿2𝑟 𝑒

−(V−𝑢𝑟)
2/2𝛿2
𝑐 . (25)

4.4. Random Forest. Random Forest (RF) is a classifier in
which a multitude of decision trees are generated. The RF
chooses the tree which has the highest votes after their
classification results. The most occurring class number in
the output of the decision trees is the final output of the RF
classifier. A recursive process in which the input dataset is
composed of smaller subsets allows the training of each deci-
sion tree.This process continues until all the tree nodes reach
the similar output targets.The Random Forest classifier takes
weights based on the input as a parameter that resembles the
number of the decision trees [18].

4.5. Artificial Neural Network. Artificial Neural Network
(ANN) is one of the most effective models in ML. It has
been inspired by the biological neural networks in the human
brain. It is made of several units or neurons of the following
form:

𝐻𝑗 = 𝜎(𝑏 + 𝑁∑
𝑖=1

𝑤𝑖𝑗𝑥𝑖) , (26)

where 𝜎 is a nonlinear activation function, 𝑏 is the bias term,
and 𝑤𝑖𝑗 are the associated weights to the column vector 𝑥
(corresponding either to the input data or the preceding
layer).

In this paper, our selected activation function is the
sigmoid function as in the following [20]:

𝜎 (𝑥) = 11 + 𝑒−𝑥 . (27)

The nodes in ANN are structured into successive layers: input
layer which corresponds to the input data, hidden layers, and
output layer. The required number of hidden layers depends
on the nonlinearity of the relation between input and output.
Backpropagation algorithm is used to adjust weights and bias
values of the edges and to minimize the loss function.

5. Experimental Results and Analysis

Our experiments were conducted in Metro City shopping
mall in Shanghai and we considered about 88 different shops
during the calibration phase. Figure 2 shows one floor plan of
this shopping mall. Only one device has been used to build
the radio map based on the collected RSSI measurements.
The total visible 𝑀 APs considered herein are equal to 185.
Samsung Galaxy Note 2 mobile phone is considered as the
reference device.

During the testing phase, sixteen different devices have
been utilized to investigate hardware variance effect on local-
ization accuracy. These devices recorded the signal strength
from the available APs with their corresponding MAC
addresses at the same locations in 8 shops. In each shop, sixty
samples have been recorded, with a total of 480 samples based
on each single device. Different database sizes denoted by 𝑆
(corresponding to the number of assigned observations to
each position) have been utilized to investigate howmuch we
need to know ahead of time about what is being learned.This
analysis aims to achieve an effective learning and correctly
predict the position, for new observations unseen before.
Moreover, the accuracy based on a single observation, as
well as the needed fused data, is studied. The performance of
the proposed method is evaluated through extensive experi-
ments, and the obtained results based on SVM are compared
with other well-known and widely used ML algorithms in
indoor localization. In this section, we assess the performance
of the built model based on a reference device to diverse
devices. In the first part, we investigate database definition
based on the collected RSSI value. It is implemented by
assigning a varied set of observations to each single location
and maintaining the absolute RSSI value during the runtime
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Figure 2: 3rd floor plan of Metro City shopping mall.

phase. The predicted location is calculated by matching the
sample points on the radio map, with the RSSI fingerprint
closest to the tracking device.

The linear kernel of SVM based on risk minimization
principle is adopted to make the decision about the current
location. Seeing that, for themost part of analysis, the number
of input variables exceeds the number of examples, which
makes the linear separation well suited based on Cover’s
theorem [33], same kernel parameters are considered during
the whole analysis to fairly compare the obtained results.
Moreover, we checked the efficiency of the rank transforma-
tion without any normalization. In addition, to evaluate the
effectiveness of the proposed method, we considered about
two ways of normalization. The first technique is the fully
normalized rank, considering the total stored input in the
database. However, the second one is the vector normalized
rank method in which the normalization factor 𝜆 is taking
the value as described in Section 2.

5.1. Experiments Based on RSSI Values. Figure 3 shows the
positioning accuracy with different 𝑆 and the influence of
changing the tracking device when using RSSI values in
both online and offline phase. The vertical axis shows the

percentage of correctly predicted positions. We look first
at the achieved accuracy in the case of using the same
training device in the positioning phase.The good and steady
performance during this test can be seen with high precision
to estimate the location, where only a few samples are enough
to attain the maximum accuracy. Almost all locations are
perfectly estimated in this case.

However, in the case of tracking device different from the
training device during the runtime phase, it works badly in
half of the studied cases. Besides, this observation is much
more remarkable if the number of fingerprint observations
in the same location is limited or very small. Although the
achieved correct rate for the remaining smartphones turns
around 100% well-estimated location, only some of them can
be distinguished in the figure. Unsteady curves are noticeable
and increasing the number of the encoded fingerprints based
on RSSI values at each location on the radio map does not
always improve the performance of the applied method.This
outcome proves the degradation pattern caused by the change
of the utilized device to record the signal strength. This is
due to the fact that RSSI stored in the database diverges from
the RSSI captured using another piece of equipment. This
low estimation is coming from the different sensitivity of
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Figure 3: Localization accuracy using RSSI based on linear SVM. (a) shows the accuracy based on a few samples. (b) shows the accuracy
based on large samples.

manifold devices to the signal throughput, which is related
to both antennas and packaging materials.

5.2. Experiments Based on the Rank Transformed Values.
In this part, we have redone the previous tests based
on the rank transformed values instead of exploiting the
direct RSSI value to predict the location. The RSSI vector𝑃1:𝑀 = {𝑆1, 𝑆2, . . . , 𝑆𝑀} is reformulated such that Ψ1:𝑀 ={Ψ1, Ψ2, . . . , Ψ𝑀}, whereΨ𝑖 satisfies (4) and the normalization
factor is initially ignored. Figure 4 illustrates the location
accuracy by changing the number of associated observations
to each Reference Point (RP) using multiple devices. A
prominent improvement is noticeable using the rank trans-
formed value and more stability is perceptible comparing to
the previous results. The maximum correct rate estimation
is much higher based on a few associated samples to the
reference locations.The reached perfect predictions based on
this test have not been attained based on RSSI analysis even
when we considered the integrality of captured observations.
The two exception cases ofXiaomi andOppoA31c devices will
be discussed in the next part.

Ranking the signal throughput of an access point at a
specific location plays an essential role in delimiting the
range of the interval in which the input variable is defined.
It is additionally practical to broaden the application of a
built model. Moreover, the prioritization of the most reliable
input variables when assigning rank values strengthens the
generalization of the model and the performance of the used
method.

5.3. Experiments Based on the Normalized Rank Transforma-
tion Method. In order to evaluate the performance of the
normalized rank transformation, we define two means of
normalization. Figure 5 represents the performance of the
learning method using the fully normalized rank transfor-
mation.The normalization factor 𝜆 takes the inverse value of𝑀 where 𝑀 is the total visible APs considered in the radio
map, while Figure 6 corresponds to the achieved results when𝜆 satisfies the condition of (5). It is noteworthy that bothways
can provide more accurate results with some meaningful
differences.

It appears that normalizing based on a fixed value needs
more samples to attain a good prediction if compared to the
second normalization side by side. It can be seen that, for
the greatest part, at least 6 samples are required to reach an
approximate 100% accurate prediction. The recorded RSSI
values using Xiaomi device have been compared with those
obtained with the remaining devices, where an unpredicted
variability has been registered. We notice that some samples
are very similar for the same environment. Meanwhile, it
could exhibit a remarkable inconsistency in the recorded
throughput at the same position. It seems that this mobile
phone is very sensitive to changes and to the stability of
the studied area which explains the registered uncertainty.
The maximum percentage of 87.5% achieved by Oppo A31c
is further interpreted based on the confusion matrix.

Nonetheless, the second followed normalization based
on the highest assigned transformed rank value is rapidly
converging to the maximum accuracy, except for the special
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Figure 4: Localization accuracy using the rank based on linear SVM. (a) shows the accuracy based on a few samples. (b) shows the accuracy
based on large samples.
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Figure 5: Localization accuracy using the fully normalized rank based on linear SVM. (a) shows the accuracy based on a few samples. (b)
shows the accuracy based on large samples.
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Figure 6: Localization accuracy using the vector normalized rank based on linear SVM. (a) shows the accuracy based on a few samples. (b)
shows the accuracy based on large samples.

case of Xiaomi device that reached its maximum until the
consideration of the 10th sample. This approach allows
considering the varying range of the allocated tags in the
new formulated vectors at one position, and consequently
the difference between vectors dimensionalities. In contrast
to the previous normalization, in the case of 𝜆 = 1/Ψ𝑀, it
does not only perform as a scaling factor but also puts the
transformed values of both real location fingerprint vector
and the runtime vector as close as possible.

5.4. Experiments Based on a Unique Set of Observations.
The experiments in this scenario consider about one sample
designating a special Reference Point. In the test, the stored
fingerprints in the radio map are attained by averaging the
whole recorded dataset. Figure 7 illustrates the percentage
of the correct location determination based on a small size
database using the linear SVM classification. Figures 7(a),
7(b), and 7(c) are, respectively, obtained by accounting for
the absolute RSSI value, the inverse rank value, and the rank
value. Finally, Figure 7(d) shows the performance of the
learning method by applying the proposed method. The aim
of comparing between Figures 7(b) and 7(c) is to demonstrate
the importance of considering the throughput signal of an
input variable in the right direction. As notable in Figure 7(b),
awrong direction leads to decreasing the accuracy comparing
with the reference Figure 7(a) based on RSSI value.

On the one hand, the allocation of tags in the right
order results in providing the APs with a high received

signal strength by high ranks, while the less reliable ones are
assigned the low values. On the other hand, this will result
in the prioritization of the principal features by according
minor consideration to theAPswith low signal strengthwhen
building the support vectors. This is due to the fact that the
decision boundaries of the support vectors of SVMare always
dominated by the large quantities. The built model, in this
case, is much fitting the needs of this study than the inverse
rank transformation. Moreover, a significant improvement is
apparent by implementing the proposed solution with no less
than 98.75% accurate estimation in 93.75% of the tested cases
and 100% accuracy in 56.25% of cases.

Now turning attention to Xiaomi device, it turns out
that fusing data reduces the effect of the large variation in
the registered signal strength and enhances the prediction
performance. We attempted to investigate the volume of
needed data to be fused to consider one fingerprint for a given
Reference Point (RP). From Figure 8, it appears that both
ways of normalization herein work better than just applying
the rank transformation with more stable prediction. Quite
similar performances are seen in Figures 8(b) and 8(c)
increasing by the rise of combined information, comparing
with Figure 8(a).

5.5. Algorithms Comparison. This section is dedicated to
the comparison and the evaluation of the effectiveness of
SVM among multiple ML techniques within a single experi-
mental environment. To validate our proposed method, we
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Figure 7: Localization accuracy comparison in the case of unique exemplification per location based on linear SVM. (a) shows the attained
accuracy based on RSSI value. (b) shows the accuracy in the case of applying the inverse rank value. (c) shows the accuracy in the case of
applying the rank transformation value. (d) Accuracy based on the normalized rank transformation. (#) The inverse rank is the converted
absolute RSSI vector by considering the opposite direction of (3).
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Figure 8: Localization accuracy in the case of unique exemplification per location based on linear SVM considering different data fusion size.
(a) shows the attained accuracy based on the rank value. (b) shows the accuracy in the case of applying the proposed rank transformation.
(c) shows the accuracy in the case of applying the fully normalized rank transformation.
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Table 1: Percentage of accurately estimated locations based on linear SVM adopting multiple combinations of constraints violation along
with comparison between RBF kernel and regularized Logistic Regression; the radio map is defined upon RSSI values.

Devices
Classification type

RBF kernelL2-R∗ L2-N L2-R L2-N L2-R L1-N L2 LR L1-R L1
(primal) (dual) (dual) (primal) L2-N∗∗ LR∗∗∗

Oppo A31c 87.08% 85.42% 85.42% 86.04% 52.29% 58.75% 37.29%
BBK 94.17% 95.20% 95.20% 95.42% 61.45% 70.20% 35.00%
Coolpad 8730L 90.62% 89.78% 89.78% 90.42% 70.42% 76.04% 41.45%
Gionee 99.17% 99.37% 99.37% 99.37% 58.12% 73.12% 37.29%
HTC One E8 82.08% 81.45% 81.45% 81.87% 54.58% 54.17% 36.04%
Huawei GRA-CL00 97.92% 98.12% 98.12% 98.33% 63.75% 64.58% 28.75%
Lenovo A788t 94.58% 94.78% 94.78% 95.00% 51.04% 66.25% 26.67%
Meizu 99.58% 99.58% 99.58% 99.58% 88.54% 87.29% 52.70%
Oppo R7c 98.12% 98.12% 98.12% 97.92% 55.62% 73.33% 36.45%
Xiaomi 74.17% 74.17% 74.17% 74.17% 40.83% 63.95% 37.50%
Xiaomi Cancro 69.58% 68.54% 68.54% 69.58% 37.50% 42.29% 32.91%
Samsung klteduoszn 92.92% 92.50% 92.50% 93.12% 68.54% 63.33% 47.50%
Meizu M2 note 97.71% 97.08% 97.08% 98.33% 83.75% 79.37% 58.12%
Samsung trlteduosctc 93.95% 93.75% 93.75% 93.96% 72.50% 66.45% 41.67%
BBK Vivo 96.87% 97.08% 97.08% 97.29% 57.91% 67.92% 30.20%
Standard device accuracy 91.87% 91.87% 91.87% 92.29% 79.79% 78.95% 54.79%
Recall (ratio) 0.92 0.92 0.92 0.97 0.79 0.79 0.55
Precision (ratio) 0.95 0.95 0.95 0.97 0.86 0.83 0.77
(∗) R stands for regularization; (∗∗) N stands for norm; (∗∗∗) LR: stands for logistic regression. We put in bold the percentages lower than 90% for easiness
of observation.

Table 2: Algorithms comparison based on the percentage of the well-recognized positions; the radio map defined upon RSSI values.

Device type
Classification type

SVM Artificial Neural Network Näıve Bayes Random Forest KNN (𝐾 = 1)L2-R L2-N
Oppo A31c 87.08% 97.50% 77.50% 59.58% 46.04%
BBK 94.17% 56.25% 33.75% 59.38% 46.67%
Coolpad 8730L 90.62% 97.71% 64.38% 80.00% 81.46%
Gionee 99.17% 74.17% 37.71% 69.38% 58.96%
HTC One E8 82.08% 91.88% 56.88% 62.71% 81.04%
Huawei GRA-CL00 97.92% 93.33% 46.67% 66.04% 73.12%
Lenovo A788t 94.58% 78.75% 35.83% 61.88% 53.33%
Meizu 99.58% 99.79% 95.00% 84.00% 99.58%
Oppo R7c 98.12% 62.92% 36.04% 63.75% 50.83%
Xiaomi 74.17% 81.04% 55.00% 56.46% 78.12%
Xiaomi Cancro 69.58% 63.75% 38.75% 44.17% 52.92%
Samsung klteduoszn 92.92% 98.75% 67.29% 74.00% 87.08%
Meizu M2 note 97.71% 97.71% 86.25% 74.38% 94.37%
Samsung trlteduosctc 93.95% 97.29% 65.83% 68.96% 89.17%
BBK Vivo 96.87% 75.00% 39.17% 75.00% 52.29%
Standard device accuracy 91.87% 97.50% 77.50% 84.79% 87.08%
Recall (ratio) 0.92 0.97 0.77 0.85 0.87
Precision (ratio) 0.95 0.97 0.85 0.93 0.93
We put in bold the percentages lower than 90% for easiness of observation.

compared the resulting estimation of the considered ML
techniques with their ground-truth locations. Taking into
account the importance of using a common database and the
sameway of data definition as considered in the offline phase,
the conducted analysis is partitioned to two main tests. The
first part is devoted to the tests based on RSSI value, while
the second one is devoted to the proposed normalized rank
transformation.

5.5.1. Algorithms Comparison upon RSSI Value. Both Tables 1
and 2 have been obtained by considering the absolute RSSI
value in the calibration and the positioning phase. Table 1
shows the influence on accuracy by changing the considered
regularization norm, the selected kernel for SVM classifier,
and using the regularized logistic regression.Herein, for SVM
classifier, the linear kernel yielded better results than the RBF
kernel which achieved only 54.79% correct prediction, by
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Table 3: Percentage of accurately estimated locations based on linear SVM adopting multiple combinations of constraints violation along
with comparison between RBF kernel and regularized Logistic Regression; the radio map is defined upon the proposed normalized rank
transformation.

Device type
Classification type

RBF kernelL2-R∗ L2-N L2-R L2-N L2-R L1-N L2 LR L1-R L1
(primal) (dual) (dual) (primal) L2-N∗∗ LR∗∗∗

Oppo A31c 87.50% 87.50% 87.50% 87.50% 58.95% 85.83% 85.20%
BBK 98.75% 98.75% 98.75% 99.17% 63.12% 95.00% 81.46%
Coolpad 8730L 100% 100% 100% 100% 96.87% 99.58% 99.79%
Gionee 100% 100% 100% 100% 71.87% 96.04% 94.79%
HTC One E8 98.75% 98.75% 98.75% 98.75% 87.50% 91.04% 95.00%
Huawei GRA-CL00 100% 100% 100% 100% 74.37% 98.12% 97.08%
Lenovo A788t 99.79% 99.79% 99.79% 100% 74.37% 96.87% 98.54%
Meizu 100% 100% 100% 100% 94.58% 100% 100%
Oppo R7c 99.58% 99.58% 99.58% 100% 70.62% 95.62% 87.92%
Xiaomi 99.17% 99.17% 99.17% 99.17% 76.46% 80.20% 85.41%
Xiaomi Cancro 100% 100% 100% 100% 74.37% 91.25% 83.33%
Samsung klteduoszn 100% 100% 100% 100% 88.75% 97.29% 98.75%
Meizu M2 note 100% 100% 100% 100% 91.25% 94.37% 100%
Samsung trlteduosctc 99.58% 99.58% 99.58% 99.58% 92.08% 95.83% 98.95%
BBK Vivo 100% 100% 100% 100% 70.83% 93.95% 98.33%
Standard device accuracy 100% 100% 100% 100% 94.79% 99.37% 97.50%
Recall (ratio) 1 1 1 1 0.94 0.99 0.97
Precision (ratio) 1 1 1 1 0.91 0.99 0.98
(∗) R stands for regularization; (∗∗) N stands for norm; (∗∗∗) LR stands for logistic regression. We put in bold the percentages lower than 90% for easiness
of observation.

fitting the parameters from our testbed, which was expected
as stated in Cover’s theorem.

It is noticeable that recognition rates and the general-
ization ability of the test data by L2-SVM tend to be better
than those by L1-SVM. Moreover, the differences in the
performance of L2-SVM applying either the dual or primal
optimization problem are imperceptible. This means that
L2 regularization is estimating the violating variables more
conservatively than L1 regularization avoiding overfitting
issue of the training samples. L1 regularization SVM tends
to pick only a few variables in the case of the existence of
several highly correlated variables. In addition, the number
of selected variables is upper bounded by the size of the
training data. However, L2 normkeeps the correlated variable
by shrinking their corresponding coefficients.

It is noteworthy that the L2 regularized logistic regression
behaves quite similarly to L2 regularized support vector since
both of them tend to maximize the margin as reducing the
loss although their considered loss is different. It is perceptible
in a few cases that L2 regularized logistic regression produces
slightly more accurate prediction compared to L2 regularized
SVM. This is due to the fact that logistic regression is mod-
eling probabilities and therefore some errors are calculated
even for correctly classified training examples while L2-SVM
does not. SVMclassifier is purely discriminative anddesigned
to give a binary classification, while the regularized logistic
regression estimates the a posteriori probability of class
membership. In this work, we desire a binary classification
and consequently identify the decision boundary directly

rather than estimate the probability of class membership. On
this basis we will look at the results of L2 regularized support
vector instead of the L2 regularized logistic regression on the
upcoming comparison.

Analysis using RSSI value based on linear SVM gives
an acceptable result in most cases. Nonetheless, the model
generalization to manifold devices could facilely fail to
achieve a very high precision; for instance, a low correct
rate estimation has been registered with Oppo A31c, HTC,
Xiaomi, and Xiaomi Cancro with, respectively, a rate of
87.08%, 82.08%, 74.17%, and 69.58%. Table 2 illustrates the
performance of the optimized algorithms, in which it can
be seen that the built model of Random Forest, KNN, and
Näıve Bayes failed dramatically, notably with heterogeneous
devices. Good performances using Neural Network and
SVM are noteworthy; however, SVM outperforms the whole
implemented ML algorithms.

5.5.2. Algorithms Comparison upon the Proposed Normalized
Rank Transformation. Tables 3 and 4 show the results of the
proposednormalized rank transformation in both calibration
and positioning phase. We investigated its usefulness consid-
ering regularization across LR and SVM classifier for linear
and RBF kernels as depicted in Table 3, as well as its suitability
of operation based on several ML algorithms as presented in
Table 4. In general, we noticed the same previous observation
based on RSSI analysis regarding the regularization and
kernel type. However, a significant improvement is perceived
moving from the RSSI value consideration to the normalized
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Table 4: Algorithms comparison based on the percentage of the well-recognized positions; the radio map is defined upon the proposed
normalized rank transformation.

Device type
Classification type

SVM Artificial Neural Network Näıve Bayes Random Forest KNN (𝐾 = 1)L2-R
Oppo A31c 87.50% 86.67% 59.38% 57.29% 54.79%
BBK 98.75% 89.58% 64.38% 47.08% 64.58%
Coolpad 8730L 100% 100% 95.83% 82.08% 86.67%
Gionee 100% 93.54% 62.08% 52.50% 67.29%
HTC One E8 98.75% 98.54% 96.25% 80.42% 83.12%
Huawei GRA-CL00 100% 98.54% 71.25% 70% 81.04%
Lenovo A788t 99.79% 96.67% 64.38% 60.83% 77.29%
Meizu 100% 100% 100% 93.54% 99.37%
Oppo R7c 99.58% 93.54% 66.88% 61.67% 65.41%
Xiaomi 99.17% 83.96% 86.04% 76.88% 80.83%
Xiaomi Cancro 100% 93.54% 78.75% 63.54% 48.12%
Samsung klteduoszn 100% 99.79% 99.58% 86.46% 87.50%
Meizu M2 note 100% 98.75% 99.58% 86.46% 92.50%
Samsung trlteduosctc 99.58% 99.17% 99.79% 85.42% 83.75%
BBK Vivo 100% 96.46% 69.38% 63.96% 70.83%
Standard device accuracy 100% 100% 100% 89.38% 90.83%
Recall (ratio) 1 1 1 0.89 0.91
Precision (ratio) 1 1 1 0.94 0.94
We put in bold the percentages lower than 90% for easiness of observation.

Table 5: Confusion matrix of OPPO A31c device.

Shop 1 Shop 2 Shop 3 Shop 4 Shop 5 Shop 6 Shop 7 Shop 8
Shop 1 60 0 0 0 0 0 0 0
Shop 2 0 60 0 0 0 0 0 0
Shop 3 0 0 60 0 0 0 0 0
Shop 4 0 0 0 60 0 0 0 0
Shop 5 0 0 0 0 60 0 0 0
Shop 6 0 0 0 0 0 60 0 0
Shop 7 0 0 0 0 0 0 60 0
Shop 8 60 0 0 0 0 0 0 0

rank transformation. The converted absolute RSSI values
seem to be more stable and reliable rather than their initial
values. Analyzing the performance of the aforementioned
ML algorithms, the accuracy based on the same device
is ameliorated while the generalization of the model to
diversiform devices has been outperformed based on NR-
SVM. This solution shows its significance improving the
optimized accuracy of SVM around the decision boundaries,
where 100% perfect prediction is achieved on the same device
based linear L2-SVM. Moreover, no less than 98.75% well-
estimated locations are attained for the remaining devices,
except the special case of Oppo A31c.

It is interesting to further examine the positioning error
percentile for the special case of Oppo A31c where only
87.5% correct estimation has been recorded. We have drawn
its corresponding confusion matrix given in Table 5 to
summarize the performance of the classification algorithm
for this device.The vertical shop specification corresponds to
the actual locationwhile the horizontal ones are the predicted
shops.The diagonal part of thematrix delineates the correctly

classified instance where sixty samples are defined in each
shop for evaluation. It is observed that both locations “shop
1” and “shop 8” are highly confused where all vectors of shop
8 were classified as location “shop 1.” In the case of having
a high similarity between RSSI vectors in different locations,
taking into account neither the initial RSSI values nor their
converted NR values can significantly distinguish between
them and provide accurate estimation.

5.6. RSSI Transformations Comparison Based on SVM.
Several studies have proposed methods to improve the
robustness of positioning systems against device diversity.
Calibration-free approaches have introduced several ways of
RSSI reformulation. This performance comparison is aiming
to show the effectiveness of the proposedNR-SVM compared
with the Hyperbolic Location Fingerprinting (HLF), the
Signal Strength Differences (SSD), and the DIFF method
based on SVM. The difference of signal strength between
pairs of APs, namely, DIFF, was proposed in [25] to reduce
the effect of diversity in devices.Themain difference between
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Figure 9: Achieved accuracy based on SSD-SVM. (a) shows the accuracy based on a few samples. (b) shows the accuracy based on large
samples.

the fundamental fingerprinting method and DIFF is that
the latest uses the difference between pairs of APs instead
of the use of the absolute RSSI value. SSD [26] takes also
the advantages of Signal Strength Differences; however, it
selects only independent sets ofDIFF.Moreover, theHLF [24]
method uses the signal strength ratios between pairs of RSSIs
as fingerprints.

We implemented the aforestated RSSI value transforma-
tions and estimated the location using SVM classifier. The
results show that both DIFF (Figure 10) and HLF (Figure 11)
conversions perform better than the initial RSSI values
(Figure 3) either when using a few samples or by considering
extrasite survey measurements to identify each location. It
appears in our case of study that the SSD transformation
achieves lower estimation in terms of accuracy comparing
the estimated positions with their ground-truth locations.
Focusing on the obtained curve using the same device versus
a few samples Figure 9(a), the performance is clearly below
that of the absolute RSSI values. The side effect of this
approach is that the performance is not always better than the
initial RSSI value or even worse with homogeneous devices
notwithstanding the enlargement of training samples. To
further investigate this observation, we carried out the test
of HLF method based on independent sets only as shown
in Figure 12. It turns out that this way of transformation
based on independent sets yields a significant loss of some
discriminative information which decreases the accuracy
instead of improving it.

NR-SVM (Figure 6) performs the best and the experi-
ments showa consistent result aswell as a high precision com-
paring with three of the popular calibration-free techniques
DIFF, SSD, and HLF based on SVM. The reached steady
performance during the whole tests proves the feasibility of
considering few samples even in the case of manifold devices.
Consequently, it reduces the workload of the offline data
training phase. Furthermore, it avoids the time-consuming
site survey in which a large number of observations are
collected to boost the reliability of the system.

6. Conclusion

In this paper, we have presented the normalized rank
transformation method for a room level determination.
The performance evaluation shows that is more efficient to
redefine and reformulate the signal strength observed from
the anchors adequately rather than to use the absolute RSSI
values from an anchor node. The importance of ranking
direction and the way of normalization have been compared.
The normalization factor based on the highest assigned rank
results in meaningful consideration of vector dimension
yielding higher accuracy, and it is characterized by its fast
convergence to the maximum possible accuracy.

We explore the efficiency of NR-SVM by formulating
three of the most popular calibration-free transformations
proposed in the literature. DIFF, SSD, and HLF are imple-
mented based on SVM classifier. It has been concluded that
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Figure 10: Achieved accuracy based on DIFF-SVM. (a) shows the accuracy based on a few samples. (b) shows the accuracy based on large
samples.
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Figure 11: Achieved accuracy based on HLF-SVM. (a) shows the accuracy based on a few samples. (b) shows the accuracy based on large
samples.
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Figure 12: Achieved accuracy based on independent HLF-SVM. (a) shows the accuracy based on a few samples. (b) shows the accuracy based
on large samples.

SSD transformation may result in a significant loss of some
discriminative information and decreases the precision of
the algorithm. However, both DIFF and HLF improved the
performance compared to the fundamental fingerprinting
method based on RSSI values. Moreover, NR-SVM has
shown its distinguishability and reliability among the studied
transformations.

Another contribution presented in this paper is the
expansion of the application of the prebuild radiomap upon a
recorded information via a single device to manifold devices,
taking into account the quality and stability over time of
the resulting outcomes. Finally, we investigate and compare
our method based on different machine learning algorithms
and we showed that the linear L2 regularization norm of the
SupportVectorMachine outperformedNaı̈ve Bayes, Random
Forest, Artificial Neural Network, and KNN algorithms with
moderate dataset in terms of accuracy, especially on handling
device heterogeneity.
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