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Abstract— The problem of direction-of-arrival (DOA) estima-
tion for noncircular sources impinging on a central symmetric
array (CSA) in the presence of sensor gain-phase uncertainties
is addressed in this paper. A noniterative method is proposed
and the corresponding stochastic Cramér–Rao bound is derived.
The proposed method is realized through two steps. First,
an eigenstructure-based technique is presented to estimate the
spatial signatures. Second, the DOAs are obtained by adopting
an element-wise division approach to the estimated spatial
signatures, based on which, the sensor gain-phase errors are given
in closed-form. The ambiguity of DOA estimation is analyzed as
well. The proposed method offers a number of advantages in
comparison with the existing methods that apply to CSA. First,
the DOA estimator is independent of the sensor phases. Second,
the proposed method applies to incoherent sources. Third, the
proposed method is capable of providing 360° azimuthal coverage
under certain conditions. Fourth, an additional performance gain
is achieved by taking the property of noncircular sources into
consideration. Numerical simulations are provided to verify the
effectiveness of the proposed method.

Index Terms— Direction-of-arrival (DOA), central symmetric
array (CSA), gain-phase errors, noncircular signal, spatial sig-
nature.

I. INTRODUCTION

THE problem of direction-of-arrival (DOA) estimation by
combining the received data from an array of sensors

has been an important topic in many applications, such
as radar, sonar and mobile communication. Many advanced
DOA estimation techniques, such as subspace-based methods
like MUSIC [1], ESPRIT [2] and their derivatives [3]–[5],
could achieve super-resolution. But, an inherent assumption
of these methods is that the sensor gains and phases are
perfectly known. Otherwise, the estimator’¡¯s performance
could degrade substantially [6]. Nevertheless, in practical
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application, the gain-phase errors always exist since the sensor
characteristics may shift with the time and the environment.

To deal with the uncertainties of sensor gains and phases,
a number of algorithms have been proposed. For example,
a kind of pre-calibration techniques have been presented
in [7]–[10]. These methods require that all the DOAs are pre-
cisely known. When this condition is satisfied, the array can be
calibrated well. However, considering the difficulties to obtain
an accurate DOA [11] and the time-variation characteristic of
sensor gains and phases, an auto-calibration method is more
preferred in practice.

The auto-calibration methods jointly estimate the parame-
ters of DOA and gain-phase errors. In [12], an simple but
effective iterative method is proposed. But it requires that
the array perturbations are small. Based on the assumption
that the array perturbations are drawn from a Gaussian dis-
tribution, [13], [14] present a maximum-a-posteriori (MAP)
method and a weighted noise subspace fitting (WNSF)
method, respectively. These two methods have an excel-
lent performance. However, they require multidimensional
search and suffer from suboptimal convergence. Based on
the amplitude-only measurements, [15], [16] present two non-
iterative algorithms. However, these two methods require
that the source signals are uncorrelated with each other and
the DOAs are confined in [−90°, 90°]. The aforementioned
methods [12]–[16] are not designed for any specific array
configuration, and then apply to arbitrary array geometries.
To overcome the above listed limitations, one may make use of
the properties of the array geometries to derive more suitable
algorithms. For example, uniformly linear array (ULA), partly
calibrated ULA and uniform rectangular array (URA) are stud-
ied in [17]–[23]. Meanwhile, some efficient auto-calibration
algorithms are proposed in these works.

In practical applications, various array geometries belong-
ing to central symmetric array (CSA), such as ULA, uni-
formly circular array (UCA) with even antennas number, cross
shaped array and URA, are widely used. Algorithms like
the methods in [24]–[26] are specially designed for CSA to
improve the DOA estimation performance. On the other hand,
noncircular signals, including amplitude modulated (AM),
M-ary amplitude shift keying (MASK) and binary phase
shift keying (BPSK) signals [27], are usually encoun-
tered in the context of radio communications. Compared
to the circular signals, the second-order statistics (SOS) of
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which are uniquely determined by its covariance matrix, the
SOS of the noncircular signals are additionally determined
by its conjugate covariance matrix. It has been shown in
[26] and [28]–[30] that a significant gain in terms of DOA
estimation performance can be achieved by making full use
of the SOS of noncircular signals. Thus, it naturally makes
sense to take the second-order noncircularity and the structure
of array geometry into account to design more suitable auto-
calibration algorithm.

In this paper, we consider the problem of jointly estimat-
ing the DOAs and gain-phase errors for noncircular sources
with CSA. A two steps method is proposed. First, the spatial
signatures are estimated by extending the technique in [31],
which is specially designed for ULA. Second, the DOAs
are obtained by finding the peak(s) of the two-dimensional
spectrum that constructed by element-wise division of the
spatial signatures. The sensor gain-phase errors are straight-
forwardly obtained by using the estimated DOAs and spatial
signatures. The step of DOA estimation is independent of the
sensor phase errors, which is similar to the amplitude-only
measurements based techniques [15], [16]. However, there are
much more ambiguous points in the two-dimensional spectra
of these two methods, which brings additional difficulties to
identify the DOAs, and then, less sources can be handled.
In this paper, we also provide an analysis on the relationship
between the true DOAs and the ambiguous points. Meanwhile,
a simple method is provided to solve the problem of ambiguity.
Thus, the proposed method is capable of providing 360°
azimuthal coverage under certain conditions. We also derive
the corresponding stochastic Cramér-Rao bound (CRB) to
which we compare the performance of the proposed method.
Simulation results demonstrate a substantially improved esti-
mation performance of the proposed method as compared to
the traditional techniques in [12] and [16].

The rest of this paper is organized as follows. In Section II,
the problem is formulated. The proposed method is given,
and the ambiguity is analyzed in Section III. In Section IV,
a relevant stochastic CRB is derived. Section V contains
simulation results. Conclusions are given in Section VI.

Throughout this paper, the following notations are used. The
superscriptions ∗, T , H and † denote the conjugate, transpose,
Hermitian transpose and pseudo-inverse, respectively. The
notations E{·}, ‖ · ‖, �(·), Tr(·), det(·), �, � and ⊗ stand for
the expectation, Frobenius norm, real part, trace, determinant,
Hadamard product, Hadamard division and Kronecker product,
respectively. D(x) represents the diagonal matrix with x in its
main diagonal. IM , �, 1m,n and 0 denote the M × M identify
matrix, the M×M exchange matrix, the m×n matrix of 1s and
the matrix of 0s with a appropriate dimension unless otherwise
specified, respectively. Finally, ·̂ stands for the estimated term.

II. PROBLEM FORMULATION

Consider K far-field narrow-band signals s1(t), s2(t), . . . ,
sK (t) impinging on a planar array of M omnidirectional
sensors from directions θ1, θ2, . . . , θK . Suppose that the
array is uncalibrated with sensor gains ρ1, ρ2, . . . , ρM and
phases φ1, φ2, . . . , φM . Without loss of generality, let the

sensor 1 be taken as the reference, then we have ρ1 = 1
and φ1 = 0. Arranging these parameters in vector form
as s(t) = [s1(t), s2(t), . . . , sK (t)]T , θ = [θ1, θ2, . . . , θK ]T ,
ρ = [ρ1, ρ2, . . . , ρM ]T and φ = [φ1, φ2, . . . , φM ]T , the array
output at time t can be modeled as

y(t) = D(g)As(t) + n(t) = Bs(t) + n(t), (1)

where A = [a(θ1), a(θ2), . . . , a(θK )] is the array manifold
with a(θ) denoting the steering vector towards direction θ ,
n(t) ∈ CM×1 is additive noise, g = ρ � exp( jφ) = [g1,
g2, . . . , gM ]T and B = D(g)A = [b1, b2, . . . , bK ] is the
spatial signature matrix with bk = D(g)a(θk) denoting the
spatial signature of the kth source. It is assumed that the noise
vector n(t) is a circular Gaussian process with mean zero
and covariance σ 2

n IM with σ 2
n denoting the noise power, and

uncorrelated with s(t), i.e., E{n(t)sT (t)} = E{n(t)sH (t)} = 0.
The steering vector towards the direction θk is given
(element-wise) by

[a(θk)]m = exp (− jω(xm sin θk + ym cos θk)), (2)

where (xm, ym) denotes the coordinate of the kth antenna and
ω = 2π/λ with λ denoting the wavelength. Suppose that
the array has a central-symmetric structure and let the array
centroid be the coordinate origin. It is easy to verify that the
array manifold satisfies

A = �A∗. (3)

The incident signals are assumed to be strict sense noncircu-
lar (SSNC). Thus, sk(t) (k ∈ {1, 2, . . . , K }) can be expressed
by the product of a complex scalar exp( jαk/2) and a real-
valued signal s̄k(t), where αk is the noncircular phase of sk(t).
Then, we can write

s(t) = D(β)s̄(t), (4)

where s̄(t) = [s̄1(t), s̄2(t), . . . , s̄K (t)]T and β = exp( jα/2)
with α = [α1, α2, . . . , αK ]T .

To take advantage of the properties carried by the incident
signals and the array, we augment the array output as

ȳ(t) = [yT (t), (�y(t))H ]T = B̄s̄(t) + n̄(t), (5)

where n̄(t) = [nT (t), (�n(t))H ]T and

B̄ =
[

BD(β)
�B∗D(β∗)

]
=

[
BD(β)

g0D(ḡ)BD(β∗)

]
=

[
B1
B2

]
(6)

with ḡ = g−1
0 �g∗ � g = [ḡ1, ḡ2, . . . , ḡM ]T and g0 = g∗

M .
Clearly, we have ḡ1 = 1.

The augmented array covariance matrix is given by

Rȳ = E{ȳ(t)ȳH (t)} = B̄RsB̄H + σ 2
n I2M , (7)

with Rs = E{s̄(t)s̄T (t)} ∈ RK×K . The eigenvalue decomposi-
tion (EVD) of Rȳ is given by

Rȳ = Us�sUH
s + Un�nUH

n , (8)

where the diagonal matrices �s and �n consist of the K largest
and the 2M − K smallest eigenvalues of Rȳ , respectively,
Us ∈ C2M×K spans the signal subspace whose columns are the
eigenvectors corresponding to the K largest eigenvalues, and
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Un ∈ C2M×(2M−K ) spans the noise subspace whose columns
are the eigenvectors corresponding to the 2M − K smallest
eigenvalues.

Assume that the source covariance matrix Rs is nonsingular,
and the sources number K is known or has been estimated by
the existing method [3]. Based on the known sources number
K and the array received data {y(t)}T

t=1 with T denoting the
number of snapshots, the goal of this paper is to determine the
DOAs, the sensor gains and phases, as well as the noncircular
phases.

III. PROPOSED METHOD

A. Spatial Signatures Estimation

Based on K and {y(t)}T
t=1, only the signal subspace and

the noise subspace can be estimated in (8) using the estimated
array covariance matrix R̂ȳ = ∑T

t=1 ȳ(t)ȳH (t). In this sub-
section, the connection between the spatial signatures and the
signal subspace is studied, based on which, a simple method
for estimating the spatial signatures is established.

Since Us and B̄ span the same space for inherent sources
with unambiguous array, there must exist a unique and non-
singular matrix T = [t1, t2, . . . , tK ] ∈ CK×K such that

Us1T = BD(β), (9a)

Us2T = g0D(ḡ)BD(β∗). (9b)

where Us1, Us2 ∈ CM×K satisfy Us = [UT
s1, UT

s2]T . Clearly,
to express the spatial signatures (with possible scaling factors)
by Us , we only need the expression of {tk}.

From (9a), we have B = Us1TD−1(β). Substituting this
back to (9b), we get

Us2 = D(ḡ)Us1	,	 = g0TD−2(β)T−1. (10)

In (10), it can be seen that 	 has the eigenvalues {νk
.= g0β

−2
k }

and the eigenvectors {tk}. Moreover, from (10), 	 can also be
expressed as

	 = U†
s1D−1(ḡ)Us2. (11)

Substituting (11) back to (10) gives

D−1(ḡ)Us2 − PUs1D−1(ḡ)Us2

= P⊥
Us1

D−1(ḡ)Us2 = 0, (12)

where P⊥
Us1

= IM − PUs1 and PUs1 = Us1U†
s1. It follows that

‖P⊥
Us1

D−1(ḡ)Us2‖2

= Tr
(

P⊥
Us1

D−1(ḡ)Us2UH
s2D−H (ḡ)P⊥

Us1

)
= (1M,1 � ḡ)H G(1M,1 � ḡ) = 0, (13)

where G = P⊥
Us1

� (Us2UH
s2)

T . (13) implies that G is rank
deficiency, and 1M,1 � ḡ ∈ null(G). Moreover, we have the
following result.

Theorem 1: Under the assumption that the given array is
ambiguous, we have that

rank(G) = M − 1 (14)

when 0 < K < M .
Proof: See Appendix A.

Partition G as G = [gL, GR] with gL ∈ CM×1. We have
that GR is of full column rank, otherwise, there must exist a
nonzero vector x ∈ C(M−1)×1 such that [0, xT ]T ∈ null(G).
However, the vectors [0, xT ]T and 1M,1 � ḡ cannot span
the same space, since ḡ1 
= 0. Based on this observation,
(13) and (14), it is easy to establish that

ḡ = 1M,1 � [1,−(G†
RgL)T ]T . (15)

With ḡ and the facts (9)-(11), one can easily establish the
algorithm for estimating the spatial signatures by using the
estimated signal subspace Ûs = [ÛT

s1, ÛT
s2]T . The algorithm is

outlined as follows.

1) Construct G by using the estimated signal space Ûs1 and
Ûs2 according to (13).

2) Obtain ˆ̄g and 	̂ according to (15) and (11), respectively.
3) Obtain {t̂k} and {ν̂k} by performing the EVD of 	̂.
4) Estimate the spatial signatures according to (9). Specifi-

cally, let b̂k be the left singular vector corresponding to
the largest singular value of [b̂1

k, b̂2
k], where

b̂1
k = Ûs1t̂k and b̂2

k = D−1( ˆ̄g)Ûs2t̂k . (16)

Note that, since the eigenvectors of a matrix are not unique,
only scaled spatial signatures can be obtained using the above
method even if the noncircular phases are known.

Remark 1: Since the elements of steering vectors all have
unit modulus, the sensor gains can be directly obtained by
calculating the moduli of the elements of the estimated spatial
signatures. Nevertheless, the sensor phases are still intractable.
Although ḡ has been estimated, there are only �M/2� − 1
independent equations can be constructed by using the phases
of {ḡk}, where �m� denotes the minimum integer that is no
less than m.

In the above derivation, an implicit assumption is that the
noncircular phases of sources are distinct to make sure the
eigenvalues of 	, i.e., {νk}, are distinct. Nevertheless, even
when some sources have a same noncircular phase, the spatial
signatures of the sources with unique noncircular phases can
also be determined. It should be noted that, the noncircular
phase of a SSNC signal depends on multiple factors, such
as transmit delay and carrier phase, which results in a strong
randomness of the noncircular phase. Moreover, when all the
noncircular phases are the same, if possible, a small shift of
the source(s) or the array would result in a relative variation
of the noncircular phases (caused by the relative variations of
the transmit delays among incident signals).

Let αD
k be the minimum absolute difference of noncirluar

phases among the kth source to the others, i.e.,

αD
k = 2 min

q,q 
=k
{|
 (βkβ

∗
q )|} = min

q,q 
=k
{|
 (ν∗

k νq)|}, (17)

where 
 (·) and | · | denote the complex angle and the absolute
value, respectively. Without loss of generality, we assume that

αD
1 ≥ αD

2 ≥, . . . ,≥ αD
K . (18)

Obviously, the estimated spatial signature of the first source
must be most reliable compared to the other sources, and it
can be identified by (17) using the estimated values {ν̂k}.
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B. DOA and Gain-Phase Errors Estimation

To estimate the DOAs, based on B̂ = [b̂1, b̂2, . . . , b̂K ], the
methods in [15] and [16] are applicable when K (K −1) < M
and the DOAs are confined in the range of [−90°, 90°].
To cope with the limitations of these methods, an element-
wise division approach is proposed in this subsection for
estimating the DOAs, with which the sensor gain-phase errors
and noncircular phases are obtained in closed-form.

Assume that the signal subspace is perfectly estimated, and
αD

1 > 0. Then, b̂1 can be expressed as

b̂1 = ε1D(g)a(θ1), (19)

where ε1 is the unknown scaling factor of the first source.
Construct

E = D−1(b̂1)[b̂2, b̂3, . . . , b̂K ] ∈ C
M×(K−1), (20)

and let En ∈ CM×(M−K+1) consist of the left singular vectors
corresponding to the M − K +1 smallest singular values of E.
Clearly, regardless of the values of {αD

k }k>1, we have

span(En) = null(EH )

= null
([

a(θ2) � a(θ1), . . . , a(θK ) � a(θ1)
]H

)
.

(21)

It follows that the vectors a(θk)�a(θ1), k = 1, 2, . . . , K −1,
are orthogonal to En . Consequently, we could construct the
following function for DOA estimation:

f (θ, ϕ) = 1∥∥EH
n (a(θ) � a(ϕ))

∥∥2 . (22)

If there is no ambiguity, then all the K DOAs can be identified
via finding the K − 1 largest peaks of f (θ, ϕ).

Unfortunately, even if the given array is unambiguous, the
function f (θ, ϕ) also exists DOA ambiguity in the searching
range from −180° to 180° for both the variables θ and ϕ.
Similar to the ambiguity analysis of the array manifold, the
DOA ambiguity of the element-wise division based searching
function also relates to the array geometry. Moreover, we have
the following result.

Theorem 2: For an M-element (M ≥ 3) array, assume that
there exist four sensors labeled as a, b, c, d (two of these four
sensors could be a same sensor) satisfying the following three
conditions.

1) The distance between sensor a and sensor b is no greater
than λ/4.

2) The projection of the line segment �bc onto the vector
�ab is no greater than λ/4.

3) The vector �bc is not parallel to �ab, i.e., �bc ∦ �ab.

Then, for two distinct DOAs θp and θq , there is only one
specific point (θ ′

p, θ
′
q) satisfying (θ ′

p, θ
′
q) 
= (θp, θq) and

θ ′
p, θ

′
q ∈ [−180°, 180°) such that

a∗(θp) � a(θq) = a∗(θ ′
p) � a(θ ′

q).

The ambiguous point (θ ′
p, θ

′
q) is given by

θ ′
p =

{
θq + π, θq ≤ 0

θq − π, θq > 0,
θ ′

q =
{

θp + π, θp ≤ 0

θp − π, θp > 0.
(23)

Proof: See Appendix B.
Theorem 2 implies that the proposed DOA estimator is

unambiguous when the array satisfies the conditions listed in
Theorem 2 and the DOAs are confined in [−90°, 90°].

When the DOAs are not confined in [−90°, 90°] or there
is no prior information on the DOAs, we only need to find
the K − 1 largest peaks of f ′(θ, ϕ) with distinct values,
since f (θk, θ1) = f (θ ′

k, θ
′
1) holds, in which (θ ′

k, θ
′
1) denotes

the ambiguous point corresponding to (θk, θ1). The associated
DOAs can be calculated by (23). Meanwhile, if one of the
DOAs is roughly known, all the DOAs can be easily identified.

Suppose that the estimated DOA groups are (θ̄k, ϕ̄k),
(k = 1, 2, . . . , 2K − 2). Notice that K − 1 elements of {ϕ̄k}
are equal to θ1 under the ideal case. Hence, when K > 2, the
true DOA groups can be identified as

{î1, . . . , îK−1} = arg min{ik }⊂SK
var

(
ϕ̄i1 , . . . , ϕ̄iK−1

)
, (24)

where the set SK = {1, 2, . . . , 2K − 2} and var(·) denotes the
variance. And then, the final DOA estimates are given by

θ̂1 = 1

K − 1

K−1∑
k=1

ϕ̄îk
, θ̂k = ϕ̄îk

, k = 2, 3, . . . , K . (25)

With the estimated DOAs and (19), the gain-phase vector
is given by

ĝ = 1

a1(θ̂1)b̂1,1
D−1(a(θ̂1))b̂1, (26)

where a1(θ̂1) and b̂1,1 denote the 1st elements of a(θ̂1) and
b̂1, respectively. Based on ĝ, the sensor gains and phases can
be straightforwardly obtained as ρ̂m = |ĝm|, φ̂m = 
 (ĝm),
m = 2, 3, . . . , M .

Based on {ν̂k}, the noncircular phases can also be estimated
as

α̂k = −
 (ν̂k/ĝ∗
M), k = 1, 2, . . . , K . (27)

Remark 2: The problem of DOA ambiguity can be solved
by (24) when K > 2. For the case that K = 2, in order to avoid
DOA ambiguity, the DOAs need to be confined in [−90°, 90°]
or at least one of the DOAs is roughly known. Nevertheless,
the algorithm for estimating the spatial signatures provided in
Section III-A has no such limitation and applies to arbitrary
CSA. Meanwhile, for some special array geometries, e.g,
URA and regular-hexagonal shaped ESPAR (electronically
steerable parasitic antenna radiator) array [32], an ESPRIT-
like algorithm could be designed by investigating the shift-
invariance structure.

IV. STOCHASTIC CRAMÉR-RAO BOUND

In this section, we derive the stochastic CRB, which is
relevant to the considered problem in this paper.

Based on the stochastic assumption, the likelihood function
of the augmented array output ȳ(t) is given by [27]

p(ȳ(t)|μa) = π−M [
det

(
Rȳ

)]− 1
2 exp

(
−1

2
ȳH (t)R−1

ȳ ȳ(t)

)
,

where the vector μa consisting of all the unknown real
parameters can be expressed as

μa = [μT , pT , σ 2
n ]T (28)
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with

μ = [ρ2, ρ3, . . . , ρM , φ2, φ3, . . . , φM , θT ,αT ]T (29)

and p ∈ RK (K−1)/2×1 consisting of all the unknown elements
of the real symmetric matrix Rs .

Ignoring the constant term, the log-likelihood function of
T snapshots is given by

L(μa) = −
T∏

t=1

p(ȳ(t)|μa)

= T

2

(
ln

(
det(Rȳ)

) + Tr(R−1
ȳ R̂ȳ)

)
. (30)

The log-likelihood function concentrated with respect to the
parameters of p and σ 2

n is given by 1

L̄(μ) = T

2
ln

(
det(B̄R̂s B̄H + σ̂ 2

n I2M )
)
, (31)

where σ̂ 2
n = Tr(P⊥̄

B
R̂ȳ)/(2M − K ) and R̂s = B̄†R̂ȳB̄†H −

σ̂ 2
n (B̄H B̄)−1 with P⊥̄

B
= I2M − B̄B̄†. The stochastic ML esti-

mate of μ is obtained by minimizing the log-likelihood
function L̄(μ) with respect to the elements of μ.

Other than directly deriving the Fisher information matrix,
the stochastic CRB can also be obtained by deriving the
asymptotic covariance matrix of the corresponding stochastic
ML estimator, since the stochastic ML method can asymptot-
ically achieve the stochastic CRB (see [33, Th. 3]). Moreover,
we have the following theorem [34, Th. 1].

Theorem 3: The stochastic CRB for the parameters of
μ satisfies

[CRB(μ)]−1 = lim
T →∞

∂2 F(μ)

∂μ∂μT
(32)

where CRB(μ) is the stochastic CRB for a single snapshot and
F(μ) = L̄(μ)/T is the average concentrated log-likelihood
function.

Let F′′(μ) be the Hessian matrix of F(μ) and F′′
0(μ) =

limT →∞ F′′(μ). Following along the lines of the derivation
given in [35], we get

[F′′
0(μ)]pq = σ−2

n �
(

Tr

(
U

∂B̄H

∂μq
P⊥̄

B

∂B̄
∂μp

))
, (33)

where

U = Rs B̄H R−1
ȳ B̄Rs = σ−2

n RsB̄H B̄

·
(

I2M − σ−2
n (R−1

s + σ−2
n B̄H B̄)−1B̄H B̄

)
Rs . (34)

Notice that B̄H B̄ = BH
1 B1 + BH

2 B2 = 2�(BH
1 B1). It follows

that U ∈ RK×K .
One can easily obtain F′′

0(μ) by deriving the partial deriv-
atives in (33). A simplified expression of F′′

0(μ) is derived in
Appendix C and expressed as

F′′
0(μ) = σ−2

n �
(

J
[

Fgg Fgs
FH

gs Fss

]
JT

)
, (35)

1The scaling factor T , which is independent of μ, is usually ignored in the
literature.

where J = blkdiag(J0, J0, I2K ) with J0 = [0, IM−1] ∈
R(M−1)×M . In (35), the gain-phase errors block

Fgg = 2(HH
g UHg) � (12,2 ⊗ 
T

1 )

+ 2(HH
g UH∗

g) � (12,2 ⊗ (�
2)
T ), (36)

where 
1,
2 (∈ C
M×M ) satisfy P⊥̄

B
=

[

1 
H

2

2 (�
1�)∗

]
, and

Hg = [Hρ, Hφ] = [(D(exp( jφ))AD(β))H ,− jBH
1 ]. (37)

The block containing the parameters of the source signals, i.e.,
θ and α, is given by

Fss = (12,2 ⊗ U) � (HH
s P⊥̄

B
Hs)

T , (38)

where

Hs = [Hθ , Hα] =
[

D(g)�D(β)
D∗(�g)�D∗(β)

j 1
2 B1

− j 1
2 B2

]
, (39)

with � = [∂a(θ1)/∂θ1, . . . , ∂a(θK )/∂θK ]. The cross term

Fgs = (HH
g (11,2 ⊗ U)) � ((12,1 ⊗ 
T

3 )H∗
s )

+ (HT
g (11,2 ⊗ U)) � ((12,1 ⊗ (�
T

4 ))H∗
s ), (40)

where 
3,
4 (∈ C2M×M ) satisfy P⊥̄
B

= [
3,
4].
The stochastic CRB follows from (32) and (35) that

CRB(μ) = 1

T
[F′′

0(μ)]−1

= σ 2
n

T

[
�

(
J

[
Fgg Fgs

FH
gs Fss

]
JT

)]−1

. (41)

For the stochastic CRB, we have the following meaningful
property.

Property 1: The stochastic CRB is independent of the sensor
phases.

Proof: To prove this property, it suffices to show that the
(p, q)th element of CRB(μ) or the (p, q)th element of F′′

0(μ)
is independent of φ for arbitrary p, q .

By definition, B̄ can be rewritten as B̄ = D(φ̄)B̄′, where
φ̄ = [exp( jφT ), exp(− j (�φ)T )]T and

B̄′ = D(φ̄∗)B̄ =
[

D(ρ)AD(β))
D(�ρ)AD(β∗))

]
,

It follows that B̄H B̄ = B̄′H B̄′ and P⊥̄
B

= D(φ̄)P⊥̄
B′D(φ̄∗).

Obviously, the matrices B̄H B̄, P⊥̄
B′ and U (see (34)) are

independent of φ. Moreover, from (56) and (57), ∂B̄/∂μp

can always be written as the matrix product of D(φ̄) and a
matrix that is independent of φ. Based on the above discussion,
it can be easily verified that the (p, q)th element of F′′

0(μ)
shown in (33) is independent of φ for arbitrary p and q , which
completes the proof.

V. SIMULATIONS

In this section, the performance of the proposed method
is evaluated in comparison with two representative methods,
including the WF method [12] and the CY method [16].
Meanwhile, the stochastic CRB for circular Gaussian signals2

2In [36], the CRB without concentrated with respect to the nuisance
parameters of the source covariance matrix and the noise power is obtained
by directly deriving the blocks of the Fisher information matrix. A closed-
form expression is still not available in the literature. However, it can be easily
obtained by using Theorem 3. The specific expression is omitted in this paper.
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Fig. 1. Array configuration and antenna indexes.

Fig. 2. Left: Normalized two-dimensional spectrum of the CY method. Right:
Normalized two-dimensional spectrum of f (y, x). First experiment.

and the stochastic CRB for SSNC signals are also listed for
comparison.

In the simulations, a 13-element CSA composed of two
identical linear arrays is employed as shown in Fig. 1. Clearly,
there exist three antennas, such as the antennas 3, 6 and 7,
satisfying the conditions in Theorem 2. The powers of the
signals are set to be a same value. Except for the fourth experi-
ment in section V-C, the signals are independently drawn from
complex Gaussian distribution such that they are uncorrelated
with each other. In each experiment, 1000 independent Monte
Carlo runs are used to obtain the curves. The sensor gains and
phases are defined as

g = 1M + [1,�gT ]T , φ = [0,�φT ]T ,

where �g and �φ are the sensor gain errors and phase
errors, respectively. Unless otherwise specified, the elements
of �ρ and �φ are drawn from uniform distribution with the
intervals [−0.15, 0.15] and [−180°, 180°], respectively.

A. Example of Two-Dimensional Spectra

In the first experiment, we set θ = [−58° −10° 45°]T ,
α = [−20° 70° 60°]T , T = 200, ρ = [1 1.11 0.89 0.92
0.91 1.07 0.85 0.94 1.14 1.12 1.02 0.86 0.95]T and φ =
[0 0.03 2.46 −1.18 −2.69 2.37 1.13 1.70 −2.72 −1.99 −0.47
−2.32 −1.90]T . The signal to noise ratio (SNR) is set to
be 5 dB. The searching grid is set to 1°. The normalized
two-dimensional spectra of the CY method and the function
f (y, x) are shown in Fig. 2.

Fig. 3. Estimation performance for two SSNC sources with small sensor
phase errors. (a) RMSE of DOA estimation versus SNR. (b) RMSE of sensor
gain errors estimation versus SNR. (c) RMSE of sensor phase errors estimation
2 versus SNR. Second experiment.

The coordinates of the four largest peaks in the right
figure of Fig. 2 are (10°,−58°), (45°,−58°), (122°, 170°)
and (122°,−135°), which satisfy the relationship in (23).
Meanwhile, there are only two strong peaks in the range
[−90°, 90°] of both the x and y axes. The left figure of Fig. 2
contains 12 (= 2K (K −1)) obvious peaks (the corresponding
coordinates are omitted here). Obviously, it is very hard to
identify all the peaks for the CY method, especially when the
number of sources K gets larger.

B. Different SNR

The second experiment investigates the performance of the
proposed method for two SSNC sources with small phase
errors. We set θ = [−8.04°, 20.12°]T , α = [−20°, 70°]T

and T = 200. The entries of the phase errors �φ are
independently drawn from the uniform distribution over the
interval [−20°, 20°]. The SNR is varied from −11 dB to 16 dB
in steps of 3 dB. The statistical results for the parameters of
DOAs, sensor gain and phase errors are shown in Fig. 3.

It shows that the CRB for SSNC signals is strictly lower
than the CRB for circular signals. The root mean square
error (RMSE) curves of the WF method for all the three
parameters can closely approach the circular Gaussian CRB
when SNR > 0 dB. However, it is inferior to the proposed
method for estimating the parameters of DOA and sensor
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Fig. 4. Estimation performance for three SSNC sources with large sensor
phase errors: RMSE of DOA estimation versus SNR. Third experiment.

phase errors. For these two parameters, the proposed method
has the best estimation performance, and the corresponding
RMSEs can closely approach the associated CRBs, respec-
tively, when SNR > −5 dB. For the sensor gain errors, the
proposed method is somewhat inferior to the WF method at
high SNR, but outperforms the WF method at low SNR.

The third experiment investigates the performance of the
proposed method for three SSNC sources with large sen-
sor phase errors. We set θ = [−8°, 20°, 45°]T , α =
[−20°, 70°, 80°]T , T = 200 and the SNR is varied from
−11 dB to 16 dB in steps of 3 dB. The statistical results are
shown in Fig. 4. It is shown that the WF method is com-
pletely failed to estimate the DOAs. The other two methods
are capable of providing a successful DOA estimation with
different performance, and the proposed method significantly
outperforms the CY method. Although the RMSE of the
proposed is greater than the CRB, there is only a small gap
between them.

C. Different Correlation of Sources

The fourth experiment investigates the performance of the
proposed method for different correlation coefficients. The
parameters of DOAs, noncircular phases and the number of
snapshots are set as the second experiment in Section V-B.
The SNR is fixed to be 5 dB. Let ε denote the correlation coef-
ficient between s̄1(t) and s̄2(t). The signals are generated as

s̄1(t) = sin((arcsin ε)/2)s̄′
1(t) + cos((arcsin ε)/2)s̄′

2(t),

s̄2(t) = cos((arcsin ε)/2)s̄′
1(t) + sin((arcsin ε)/2)s̄′

2(t),

where s̄′
1(t) and s̄′

2(t) are independently drawn from Gaussian
distribution with mean zero and the variance calculated by
the corresponding SNR. It can be easily verified that the
correlation coefficient between s̄1(t) and s̄2(t) is ε. In the
simulation, ε is varied from 0 to 0.99. The statistical results
are shown in Fig. 5.

The simulation results show that the proposed method
significantly outperforms the CY method, while the WF
method is completely failed to estimate the DOAs even
when the sources are uncorrelated. Fig. 5 demonstrates that
the proposed method agrees well with the CRB for SSNC
signals when ε ≤ 0.9. However, increasing the correlation

Fig. 5. RMSE of DOA estimation versus correlation coefficient.
Fourth experiment.

Fig. 6. RMSE of DOA estimation versus the number of snapshots.
Fifth experiment.

coefficient of sources causes a dramatic increase of the
RMSE of the CY method. It is seen that the RMSE of
the proposed method is less than 1° even when ε = 0.9.
As a comparison, the CY method is completely failed when
ε > 0.6. Meanwhile, it also indicates that all the methods fail
to cope with the highly correlated case when ε = 0.99, and
the CRB itself is getting very large in this case.

D. Different Number of Snapshots
The fifth experiment investigates the performance of the

proposed method for different number of snapshots. The
parameters are the same as those of the second experiment
in Section V-B except that SNR = 5 dB and the number
of snapshots is varied from 10 to 280 in steps of 30. The
statistical results are shown in Fig. 6.

It is seen from Fig. 6 that the proposed method outperforms
all the other two methods and closely approaches the CRB for
SSNC signals when T > 40. However, the CY method cannot
approach the corresponding CRB and the WF method fails to
estimate the DOAs.

E. Different Noncircular Phase
The sixth experiment investigates the performance of the

proposed method for different noncircular phases. We set θ =
[−8°, 20°]T , T = 200 and SNR = 5 dB. The noncircular
phases are set to 0° and 0° + �α, respectively, where �α is
varied from 0° to 360° in steps of 20°. The statistical results
are shown in Fig. 7.
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Fig. 7. RMSE of DOA estimation versus the difference of noncircular phases.
Sixth experiment.

Fig. 8. RMSE of DOA estimation versus angular separation. Seventh
experiment.

The results demonstrate the following conclusions. First, the
CRB for circular sources is insensitive to the difference of
noncircular phases. Second, compared to the CRB for circular
signals, the CRB for SSNC signals can achieve significant
performance gain when exp( jα′) 
= 1, and the largest perfor-
mance gain is achieved when α′ = 180°. Third, the proposed
method has the best performance, and closely approaches the
CRB for SSNC signals when the phase difference is large
enough. In addition, Fig. 7 also shows that the performance
of the CY method is slightly affected by the difference of
the noncircular phases. However, the theoretic analysis of this
phenomenon is beyond the scope of this paper.

F. Different Angular Separation
The seventh experiment studies the RMSE performance

versus angular separation. We set θ = [0°, 0° + �θ ]T ,
α = [−42°, 67°]T , T = 200 and SNR = 10 dB. The
entries of the phase errors �φ are independently drawn from
the uniform distribution over the interval [−20°, 20°]. The
angular separation �θ is varied from 1° to 10°. Fig. 8
demonstrates that the proposed method outperforms the other
two competitors, and closely approaches the CRB for SSNC
signals when the angular separation between two sources is
no less than 3°. It also shows that the CRB for SSNC signals
is less than the CRB for circular signals especially when the
angular separation is small.

G. Different Sensor Phase Errors
The eighth experiment studies the RMSE performance

versus the standard derivation of sensor phase errors.

Fig. 9. RMSE of DOA estimation versus the standard derivation of sensor
phase errors. Eighth experiment.

The parameters are the same as those in Section V-F except
that SNR = 5 dB, θ = [−8°, 20°]T and the sensor phase
errors are set to be φm = √

12σφκm, m = 2, 3, . . . , M , where
{κm} are independently drawn from uniform distribution over
the interval [−0.5, 0.5], and the standard derivation σφ is
varied from 10° to 90°. It is seen from Fig. 9 that both
the two CRBs, the CY method and the proposed method
are independent of the phase errors. The proposed method
has the best estimation performance, and closely approaches
the CRB for SSNC signals. The WF method outperforms the
CY method and closely approaches the CRB when σφ ≤ 30°,
but it is inferior to the CY method when σφ > 40°.

VI. CONCLUSION

In this paper, a two steps method is proposed for the
problem of jointly estimating the parameters of DOAs and
gain-phase errors for noncircular sources with CSA. Differ-
ent from the existing methods, the proposed auto-calibration
method first estimates the spatial signatures, based on which
the estimation algorithm for the parameters of DOAs and the
gain-phase errors is derived. This strategy brings a number of
advantages in comparison with the existing techniques, such as
applicable to incoherent sources, applicable to large gain-phase
errors and acceptable computational complexity. Meanwhile,
the proposed method is capable of providing 360° azimuthal
coverage when K > 2 or at least one of the DOAs is roughly
known. The corresponding stochastic CRB is derived as well.
Simulation results show that the proposed method outperforms
the conventional methods especially when the differences of
the noncircular phases are large.

APPENDIX A
PROOF OF THEOREM 1

Clearly, G is positive semidefinite. To prove Theorem 1,
it suffices to show that xH Gx > 0 for all x ∈ Sx , where
Sx = {x|x ∈ CM×1, x ∦ (1M,1 � ḡ), x 
= 0}. Since

xH Gx = ‖P⊥
Us1

D(x)Us2‖2

= ‖g0P⊥
B D(x � ḡ)BD(β∗)T−1‖2, (42)

we only need to show that P⊥
B D(x � ḡ)B 
= 0 for all x ∈

Sx , or equivalently, span(D(x̄)B) 
= span(B) for any x̄ =
x � ḡ 
= 1M,1.
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If there exists an x ∈ Sx making span(B) =
span(D(x�ḡ)B). There must exist a unique nonsingular matrix
T̄ ∈ CK×K such that

D(x � ḡ)B = BT̄.

⇒ (BT ◦ IM )(x � ḡ) = (IK ◦ B) vec(T̄)

⇒ ϒẋ = 0, (43)

where vec(·) and ◦ denote the vector operator and column-
wise Kronecker product, respectively, ẋ = [x̄T , t̄T ]T with t̄ =
vec(T̄), ϒ = [ϒ1,ϒ2] ∈ CM K×(M+K 2) with

ϒ1 =

⎡
⎢⎢⎢⎣

D(b1)
D(b2)

...
D(bK )

⎤
⎥⎥⎥⎦ ,ϒ2 =

⎡
⎢⎢⎢⎣

B
B

. . .

B

⎤
⎥⎥⎥⎦,

As ẋ = [1T
M,1, vec(IM )T ]T is a solution of (43), we only need

to show that

rank(ϒ) = M + K 2 − 1. (44)

Note that M + K 2 − 1 − M K = (K + 1 − M)(K − 1) ≤ 0,
i.e., M + K 2 − 1 ≤ M K , when 0 < K < M .

When M = K +1, ϒ has the size (K 2 + K ) × (K 2+K +1).
If ϒ is not of full row rank, there exists a nonzero vector
ẍ = [ẍT

1 , ẍT
2 , . . . , ẍT

K ]T with ẍk ∈ CM×1 (k = 1, 2, . . . , K )
such that ẍHϒ = 0, which is equivalent to[∑K

k=1 ẍH
k � bT

k , ẍH
1 B, ẍH

2 B, . . . , ẍH
K B

] = 0. (45)

Since B ∈ CM×(M−1) and the array is ambiguous, we have
dim(null(BH )) = 1. The (k + 1)th (k ∈ {1, 2, . . . , K }) term
in (45) implies that ẍk = 0 or ẍk ‖ ẍ0, where ẍ0 satisfies
span(ẍ0) = null(BH ). Thus, we can write ẍk = x ′

k ẍ0. And
then the first term in (45) can be rewritten as

1T
K ,1D(x′∗

0 )BT D(ẍ∗
0) = x′H

0 BT D(ẍ∗
0) = 0, (46)

where x′
0 = [x ′

1, x ′
2, . . . , x ′

K ]T . It should be noted that ẍ0 has
at most one zero element, otherwise, B is not of full column
rank. Consequently, BT D(ẍ∗

0) ∈ C
K×M is of full row rank.

It follows that (46) cannot be hold for any nonzero vector x′
0.

Therefore, (44) holds in this case.
When M = K +2, ϒ has the size ((M −1)K + K ) × (M −

1)+ K 2 + 1). Based on the above discussion, there must exist
a submatrix of ϒ, denoted by ϒs ∈ C

((M−1)K×(M−1)+K 2), is
of full row rank. And it can be formed with the submatrix of
ϒ indexed by the rows and columns corresponding to M − 1
sensors. Using two proper permutation matrices JL and JR ,
we can get

ϒp = JLϒJR =
[

ϒs 0
ϒld υrd

]
, (47)

where ϒld = [0, blkdiag(υT
rd ,υT

rd , . . . ,υT
rd )] with 0 having the

size K × (M − 1), and υrd = [b1,M , b2,M , . . . , bK ,M ]T with
bk,M denoting the Mth element of bk . Clearly,

rank(ϒ) = rank(ϒp) = rank(ϒs) + rank(υrd )

= (M − 1)K + 1 = M + K 2 − 1 (48)

It follows that (44) holds.

Consider that (44) holds when M = K + p (p > 2). A
similar proof to the case M = K +2 can be provided to prove
that (44) holds when M = K + p + 1, which completes the
proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

For two given distinct DOAs θp and θq , assume that there
exist two DOAs θ and ϕ satisfying (θ, ϕ) 
= (θp, θq) such that

a∗(θp) � a(θq) = a∗(θ) � a(ϕ). (49)

Without loss of generality, suppose that the sensor a and sensor
b are located on the x-axis and the coordinates of the sensor
a, b and c are (xa, 0), (xb, 0) and (xc, yc), respectively. (49)
implies that

exp( jωxab
(
sin θp − sin θq

)
) = exp ( jωxab (sin θ − sin ϕ))

(50)

and

exp
(

jω(xcd(sin θp − sin θq) + ycd (cos θp − cos θq))
)

= exp ( jω(xcd(sin θ − sin ϕ)+ycd(cos θ − cos ϕ))), (51)

where xab = xa − xb, xcd = xc − xd and ycd = yc − yd . It
follows from (50) that

sin θp − sin θq = sin θ − sin ϕ + nλ/xab, (52)

where n is an integer number. Obviously, we have |nλ/xab| <
4, since θp and θq are assumed to be distinct. If the array
geometry satisfies the condition 1), then we get n = 0.

Substitute (52) back into (51). When the sensors satisfy the
condition 3), i.e., ycd 
= 0, we get

cos θp − cos θq = cos θ − cos ϕ + mλ/ycd , (53)

where m is an integer number. Based on the same analysis
of n, if the array geometry satisfied the condition 2), we have
m = 0. Then, (52) and (53) are reduced to{

sin θp − sin θq = sin θ − sin ϕ

cos θp − cos θq = cos θ − cos ϕ.
(54)

Let r1 = [sin θp, cos θp]T , r2 = [sin θq, cos θq ]T , r3 =
[sin θ, cos θ ]T and r4 = [sin ϕ, cos ϕ]T . (54) is equivalent to{

r1 − r2 = r3 − r4

‖r3‖2 = ‖r4‖2 = 1.
(55)

A geometrical explanation of (55) is shown in Fig. 10. It
shows that the only solution is r3 = −r2 and r4 = −r1,
which leads to the result of (23). The proof is completed.

APPENDIX C
DERIVATION OF (35)

One can easily obtain the partial derivatives in (35) as

∂B̄/∂ρp =
[
0K ,p−1, hρ

p, 0K ,2M−2p, hρ∗
p , 0K ,p−1

]H
, (56a)

∂B̄/∂φp = [0K ,p−1, hφ
p, 0K ,2M−2p, hφ∗

p , 0K ,p−1]H , (56b)

∂B̄/∂θp = [0M,p−1, hθ
p, 0M,K−p−1] (56c)

∂B̄/∂αp = [0M,p−1, hα
p, 0M,K−p−1] (56d)



XIE et al.: DOA AND GAIN-PHASE ERRORS ESTIMATION FOR NONCIRCULAR SOURCES 3077

Fig. 10. Geometrical explanation of (55).

with

hρ
p = [exp( jφp)ar H

p D(β)]H (57a)

hφ
p = [ jgpar H

p D(β)]H , (57b)

hθ
p =

[
βp

∂aT (θp)
∂θp

D(g), β∗
p

∂aT (θp)
∂θp

D∗(�g)
]T

, (57c)

hα
p = [

j 1
2βpaT (θp)D(g),− j 1

2β∗
paT (θp)D∗(�g)

]T
, (57d)

where ar H
p is the pth row of A and 0m,n denotes m ×n matrix

of 0s.
For a concise expression of F′′

0(μ), define the matrix F ∈
C(2M+2K )×(2M+2K ) as

[F]pq = Tr

(
U

∂B̄H

∂ηq
P⊥̄

B

∂B̄
∂ηp

)
, (58)

where ηp is the pth element of η (= [ρT ,φT , θT ,αT ]T ).
In order to obtain F, we need to derive all the blocks related
to these four parameters.

For the gain errors block of F, denoted by Fρρ , we have
that 1 ≤ p, q ≤ M . And its (p, q)th element is given by

[Fρρ]pq = Tr
(

U(hρ
q [
1]qphρH

p + hρ∗
q [�
2]qphρH

p

+ hρ
q [
H

2 �]qphρT
p +hρ∗

q [
∗
1]qphρT

p )
)
,

= 2[
1]qphρH
p Uhρ

q + 2[�
2]qphρH
p Uhρ∗

q , (59)

where 
1, 
2 are defined in (36), and the second equation
uses the facts that �
2 = (
H

2 �)∗ and U ∈ RK×K (see the
discussion after (34)). It follows that

Fρρ = 2(HH
ρ UHρ) � 
T

1 + 2(HH
ρ UH∗

ρ) � (�
2)
T (60)

where Hρ = [hρ
1 , hρ

2 , . . . , hρ
M ] = (D(exp( jφ))AD(β))H .

Similarly, we can get the phase errors block

Fφφ = 2(HH
φ UHφ) � 
T

1 + 2(HH
φ UH∗

φ) � (�
2)
T (61)

and the cross term of the gain errors and phase errors

Fρφ = 2(HH
ρ UHφ) � 
T

1 + 2(HH
ρ UH∗

φ) � (�
2)
T , (62)

where Hφ = [hφ
1 , hφ

2 , . . . , hφ
M ] = − jBH

1 . Construct the gain-

phase errors block as Fgg =
[

Fρρ Fρφ

FH
ρφ Fφφ

]
. A concise expression

of Fgg shown in (36) immediately follows from (60)-(62).

For the cross term of gain errors and DOAs, denoted by Fρθ ,
we have that 1 ≤ p ≤ M and 1 ≤ q − 2M ≤ K . Let i =
q − 2M . Its (p, i )th element is given by

[Fρθ ]pi = Tr
(
[U]:i hθ H

i ([
3]:phρH
p + [
4�]:phρT

p )
)

= hρH
p [U]:i [
3]T:phθ∗

i + hρT
p [U]:i [
4�]T:phθ∗

i , (63)

where [·]:i denotes the i th column, and 
3, 
4 are defined
in (40). It follows that

Fρθ = (HH
ρ U) � (
T

3 H∗
θ ) + (HT

ρ U) � (�
T
4 H∗

θ ), (64)

where a simplified expression of Hθ (= [hθ
1, hθ

2, . . . , hθ
K ]) is

given in (39). Similarly, we can get the cross term related to the
gain-phase errors and the parameters of the signals, i.e., Fgs,
as shown in (40). Finally, the θ and α related block, i.e., Fss,
can be easily obtained as shown in (38).
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