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Efficient and Robust Recovery of Sparse Signal and
Image Using Generalized Nonconvex Regularization

Fei Wen , Member, IEEE, Ling Pei, Member, IEEE, Yuan Yang, Wenxian Yu, and Peilin Liu, Member, IEEE

Abstract—This paper addresses the robust reconstruction prob-
lem of a sparse signal from compressed measurements. We propose
a robust formulation for sparse reconstruction that employs the
�1 -norm as the loss function for the residual error and utilizes a
generalized nonconvex penalty for sparsity inducing. The �1 -loss
is less sensitive to outliers in the measurements than the popular
�2 -loss, while the nonconvex penalty has the capability of amelio-
rating the bias problem of the popular convex LASSO penalty and
thus can yield more accurate recovery. To solve this nonconvex
and nonsmooth minimization formulation efficiently, we propose
a first-order algorithm based on alternating direction method of
multipliers. A smoothing strategy on the �1 -loss function has been
used in deriving the new algorithm to make it convergent. Further,
a sufficient condition for the convergence of the new algorithm has
been provided for generalized nonconvex regularization. In com-
parison with several state-of-the-art algorithms, the new algorithm
showed better performance in numerical experiments in recover-
ing sparse signals and compressible images. The new algorithm
scales well for large-scale problems, as often encountered in image
processing.

Index Terms—Alternating direction method, compressive sens-
ing, impulsive noise, nonconvex regularization, robust sparse
recovery.

I. INTRODUCTION

COMPRESSIVE sensing (CS) allows us to acquire sparse
signals at a significantly lower rate than the classical

Nyquist sampling [1], [2], which has attracted much attention
in recent years and found wide applications in radar [3], com-
munications [4], and speech processing [5]. Particularly, the CS
theory is relevant in some applications in image processing,
such as magnetic resonant imaging (MRI) [6], image super-
resolution and denoising [7]–[9], and hyper-spectral imaging
[10]. The CS theory states that, if a signal x ∈ Rn is sparse, or
can be sparsely represented on a basis, it can be recovered from
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a small number of linear measurements y = Ax ∈ Rm with
m < n, where A ∈ Rm×n is the sensing matrix. With the con-
sideration of measurement noise, the compressed measurements
can be modeled as

y = Ax + n (1)

where n ∈ Rm denotes the measurement noise.
An intuitive method to reconstruct the sparse vector x consists

in the following �0-minimization problem

min
x

‖x‖0 subject to ‖Ax − y‖2 ≤ ε (2)

where ‖x‖0 is the �0-norm, which counts the number of nonzero
elements in the vector x, ε > 0 constrains the strength of
the residual error. Generally, the nonconvex �0-minimization
problem (2) is difficult to solve, known to be NP-hard. To ad-
dress this problem, convex relaxation methods have been pro-
posed, such as basis-pursuit denoising (BPDN) [11]

min
x

‖x‖1 subject to ‖Ax − y‖2 ≤ ε (3)

which relaxes the �0-norm regularization into the �1-norm reg-
ularization. The problem (3) can be equivalently converted into
an unconstrained formulation (also called LASSO [12])

min
x

{
1
μ
‖Ax − y‖2

2 + ‖x‖1

}
(4)

where μ > 0 is a regularization parameter that balances the
fidelity and sparsity of the solution.

The properties of �1-regularization have been well studied
in the context of CS. It has been demonstrated that the sparse
signal x can be reliably recovered by �1-regularized methods
under some conditions of A [2]. However, as a relaxation of the
�0-regularization, the performance of the �1-regularization is
limited in two aspects. First, it would produce biased estimates
for large coefficients. Second, it cannot recover a signal with the
least measurements [13]. As a result, the estimate given by an
�1-regularized method is not sparse enough in some situations.
A simple example of such a case can be found in [14].

To address this limitation, many improved methods em-
ploying �q -regularization have been proposed, such as the �q -
regularized least-squares (�q -LS) formulation

min
x

{
1
μ
‖Ax − y‖2

2 + ‖x‖q
q

}
(5)

with 0 ≤ q < 1, where ‖x‖q
q is the nonconvex �q quasi-norm

defined as ‖x‖q
q =

∑
i |xi |q . Compared with �1-regularization,
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�q -regularization has shown significantly better recovery per-
formance in many applications [15]–[23]. Under certain con-
ditions of the sensing matrix, �q -regularized methods require
fewer measurements to achieve reliable reconstruction than
�1-regularized methods [13]. Meanwhile, the sufficient condi-
tions for reliable reconstruction for �q -regularized methods are
weaker than those for �1-regularized methods [15], [23].

As in (2)–(5), many existing sparse recovery methods use
the �2-norm loss function. It is reasonable when the measure-
ment noise is Gaussian distributed, since �2-norm data fitting
is optimal for Gaussian noise. However, the noise in practical
applications often exhibits non-Gaussian properties. One impor-
tant class of non-Gaussian noises arises in numerous practical
situations is impulsive noise. Impulsive noise is well suited to
model large outliers [24], which is frequently encountered in im-
age processing [25]–[27]. Impulsive corruption may come from
buffer overflow [28], missing data in the measurement process,
bit errors in transmission [29], [30], and unreliable memory
[31]. In these cases, the performance of �2-loss based methods
may severely degrade.

To achieve robust sparse recovery in the presence of impulsive
noise, the Lorentzian-norm has been used as the loss function in
[32], [33]. Meanwhile, in [34], the �1-norm has been employed
as the metric for the residual error to obtain the �1-regularized
least-absolute (�1-LA) formulation

min
x

{
1
μ
‖Ax − y‖1 + ‖x‖1

}
. (6)

Then, more efficient ADMM algorithms for this �1-LA problem
have been developed in [35]. Meanwhile, the Huber penalty
function has be considered in [36]. In [37], ADMM and fast
iterative shrinkage/thresholding algorithm (FISTA) have been
used to efficiently solve the Huber penalty based formulation.
Moreover, the �p -norm loss with 0 ≤ p < 2 has been considered
in [38], [39]. Notably, due to its simultaneous convexity and
robustness, the �1-loss has been wide used in designing robust
methods, such as in sparse representation based face recognition
[40] and channel estimation [41].

In this paper, we consider the following P (·)-regularized
least-absolute formulation for sparse recovery

min
x

{
1
μ
‖Ax − y‖1 + P (x)

}
. (7)

where P (·) is a generalized nonconvex penalty for sparsity pro-
motion, such as the hard-thresholding, smoothly clipped abso-
lute deviation (SCAD), or �q -norm penalty. On the one hand,
like the works [34], [35], [40], [41], we use the �1-loss function
as it is less sensitive to outliers compared with the quadratic
function. On the other hand, unlike all of the existing robust
methods [32]–[41] employing the �1-regularization for sparsity
inducing, we use a generalized nonconvex regularization in the
new formulation. It is expected that, compared with the �1-LA
formulation (6), the new formulation retains the same robust-
ness against outliers while can yield more accurate recovery via
nonconvex regularization.

A. Contributions

Generally, the problem (7) is difficult to solve, since in addi-
tion to the nonconvexity of the regularization term, both terms
in the objective are nonsmooth. The main contributions of this
work are as follows.

First, we propose an efficient first-order algorithm for the
problem (7) based on ADMM. The standard ADMM algorithm
can be directly used to solve (7), but it is not convergent for a
nonconvex P (·) as the loss term is nonsmooth. To derive a con-
vergent algorithm for generalized nonconvex P (·), a smoothing
strategy of the �1-loss has been adopted. The new algorithm
scales well for high-dimensional problems, as often encoun-
tered in image processing.

Second, a convergence condition of the new algorithm has
been derived for a generalized nonconvex regularization penalty.
Finally, we have evaluated the new algorithm via reconstruction
experiments on both simulated vector-signals and images. The
results showed that the new algorithm is more robust than �2 -loss
based methods while be more accurate than �1-regularization
based methods.

Matlab codes for the proposed algorithm and for re-
producing the results in this work are available online at
https://github.com/FWen/LqLA-Sparse-Recovery.git.

B. Outline and Notations

The rest of this paper is organized as follows. Section II intro-
duces the proximity operator for several generalized nonconvex
penalty functions. In Section III, the new algorithm is presented.
Section IV contains convergence analysis of the new algorithm.
Section V contains experimental results. Finally, Section VI
ends the paper with concluding remarks.

Notations: For a vector v, diag(v) represents a diagonal ma-
trix with diagonal elements be v. N (0, σ2) denotes a Gaussian
distribution with zero-mean and variance σ2 . E(·), 〈·, ·〉 and
(·)T stand for the expectation, inner product and transpose,
respectively. ∇f(·) and ∂f(·) stand for the gradient and subdif-
ferential of the function f , respectively. sign(·) denotes the sign
of a quantity with sign(0) = 0. λmax(·) denotes the maximal
eigenvalue of a matrix. I(·) denotes the indicator function. In

stands for an n × n identity matrix. ‖·‖q with q ≥ 0 denotes

the �q -norm defined as ‖x‖q = (
∑

i=1 |xi |q )1/q . dist(x, S) :=
inf{‖y − x‖2 : y ∈ S} denotes the distance from a point x ∈
Rn to a subset S ⊂ Rn . For a matrix X, X 
 0 means that it is
positive-semidefinite.

II. PROXIMITY OPERATOR FOR SPARSITY INDUCING PENALTIES

This section revisits sparsity inducing penalties and the corre-
sponding proximity operators, including the hard-thresholding,
soft-thresholding, �q -thresholding, SCAD, and minimax con-
cave (MC) penalties, which are the most commonly used
penalties for sparsity inducing. For many nonsmooth problems
employing such regularization penalties, proximity operator
plays a central role in developing highly-efficient first-order
algorithms which scale well to high-dimensional problems.
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For a proper and lower semicontinuous function P (·), its
proximity operator with penalty η (η > 0) is defined as

proxP,η (t) = arg min
x

{
P (x) +

η

2
(x − t)2

}
. (8)

1) Hard-thresholding. The penalty is given by [42]

P (x) = 2 − (|x| −
√

2)2I(|x| <
√

2)

and the corresponding thresholding function is

proxP,η (t) = tI(|t| >
√

2/η). (9)

Note that, the �0-norm penalty P (x) = |x|0 also results
in (9).

2) Soft-thresholding, P (x) = |x|. The corresponding thresh-
olding function is

proxP,η (t) = S1/η (t) = sign(t)max {|t| − 1/η, 0}
(10)

where Sα is well-known as the soft-thresholding/shrink-
age operator.

3) �q -norm (0 < q < 1), P (x) = |x|q . In this case, the prox-
imity operator (8) does not have a closed-form solution
except for the two special cases of q = 1

2 and q = 2
3 [43],

and it can be solved as [44]

proxP,η (t) =

⎧⎪⎨
⎪⎩

0, |t| < τ

{0, sign(t)β}, |t| = τ

sign(t)y∗, |t| > τ

(11)

where β = [2(1 − q)/η]
1

2−q , τ = β + qβq−1/η, y∗ is the
solution of h(y) = qyq−1 + ηy − η|t| = 0 over the region
(β, |t|). The function h(y) is convex, thus, when |t| > τ ,
y∗ can be iteratively computed by a Newton’s method.

4) SCAD. The penalty is given by

P (x; λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ|x|, |x| < λ

2aλ|x| − x2 − λ2

2(a − 1)
, λ ≤ |x| < aλ

(a + 1)λ2/2, |x| ≥ aλ

for some a > 2, where λ > 0 is a threshold parameter.
The corresponding thresholding function is [45]

proxP,η (t) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sign(t)max{|t| − λ, 0}, |t| ≤ 2λ

(a − 1)t − sign(t)aλ

a − 2
, 2λ < |t| ≤ aλ

t, |t| > aλ

. (12)

5) MC penalty. Similar to the hard, �q , and SCAD penal-
ties, MC can also ameliorate the bias problem of LASSO
[46], and it has been widely used for penalized variable
selection in high-dimensional linear regression. MC has a
parametric formulation as

P (x; λ) = λ

∫ |x|

0
max(1 − t/(γλ), 0)dt

with γ > 1. The corresponding thresholding function is

proxP,η (t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |t| ≤ λ/η

sign(t)(|t| − λ/η)
1 − 1/γ

, λ/η < |t| ≤ γλ/η

t, |t| > γλ/η

.

For each λ > 0, we can obtain a continuum of penalties
and threshold operators by varying γ in the range (0,+∞).

III. PROPOSED ALGORITHM

ADMM is a simple but powerful framework, which is well
suited to distributed optimization and meanwhile is flexible
to solve many high-dimensional optimization problems [47].
ADMM uses a variable-splitting scheme, which separates cou-
pled components in the cost function via introducing auxil-
iary constraint variables. This procedure naturally decouples
the variables and transforms the original problem into an equiv-
alent problem that can be effectively solved in an alternating
minimization manner.

A. Standard ADMM Algorithm Without Smoothing

Using an auxiliary variable v ∈ Rm , the formulation (7) can
be rewritten as

min
x,v

{
1
μ
‖v‖1 + P (x)

}
subject to Ax − y = v. (13)

The augmented Lagrangian of the problem is

L(v,x,w) =
1
μ
‖v‖1 + P (x) − 〈w,Ax − y − v〉

+
ρ

2
‖Ax − y − v‖2

2

where w ∈ Rm is the Lagrangian multiplier, ρ > 0 is a penalty
parameter. Then, ADMM consists of the following three steps

xk+1 = arg min
x

(
P (x) +

ρ

2

∥∥∥∥Ax − y − vk − wk

ρ

∥∥∥∥
2

2

)

(14)

vk+1 = arg min
v

(
1
μ
‖v‖1 +

ρ

2

∥∥∥∥Axk+1 − y − v − wk

ρ

∥∥∥∥
2

2

)

(15)

wk+1 = wk − ρ
(
Axk+1 − y − vk+1) . (16)

The x-update step (14) in fact solves a penalized LS prob-
lem. We use a standard trick for speeding up ADMM that
solve this subproblem approximately. Specifically, let uk =
y + vk + wk/ρ, we linearize the quadratic term in the objective
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function of (14) at a point xk as

1
2

∥∥Ax − uk
∥∥2

2

≈ 1
2

∥∥Axk − uk
∥∥2

2 +
〈
x − xk , d1(xk )

〉
+

1
2τ1

∥∥x − xk
∥∥2

2

=
1
2

∥∥Axk − uk
∥∥2

2 +
1

2τ1

∥∥x − xk + τ1d1(xk )
∥∥2

2

− τ1

2

∥∥d1(xk )
∥∥2

2

where d1(xk ) = AT (Axk − uk ) is the gradient of the
quadratic term at xk , τ1 > 0 is a proximal parameter. Based
on this approximation, the x-update step becomes easy to
solve since it can be computed element-wise as the proximity
operator (8)

xk+1 = proxP,ρ(b
k ) (17)

with bk = xk − τ1AT (Axk − uk ). As will be shown in
Lemma 1 in Section IV, for a generalized nonconvex penalty
if 1/τ1 is selected to be a Lipschitz constant of d1(x), i.e.,
1/τ1 > λmax(AT A), the augmented Lagrangian function is
guaranteed nonincreasing when the x-update step is approxi-
mately solved by (17).

The v-upadte step (15) has an closed-form solution as

vk+1 = S1/(μρ)

(
Axk+1 − y − wk

ρ

)
. (18)

When P (·) is the �1-norm penalty, the ADMM algorithm
using the update steps (17), (18) and (16) reduces to Your ALgo-
rithm for L1 (YALL1) [34], and it is guaranteed to converge to
the global minimizer of the problem (13) if τ1 < 1/λmax(AT A)
[34]. However, for a nonconvex penalty, e.g., MC, SCAD or �q -
norm with q < 1, the convergence of this ADMM algorithm is
not guaranteed. Empirical studies show that it always fails to
converge in this case.

B. Proposed ADMM Algorithm With Smoothed �1-Loss

To develop a convergent algorithm for the nonconvex case
with a nonconvex penalty P (·), we consider a smoothed �1-loss
function and propose a smoothed formulation of the problem
(7) as

min
x

{
1
μ
‖Ax − y‖1,ε + P (x)

}
(19)

where the smoothed �1-norm is defined as

‖v‖1,ε =
∑

i
(v2

i + ε2)
1
2

with ε > 0 be an approximation parameter. Since lim
ε→0

‖v‖1,ε =

‖v‖1 , ‖v‖1,ε accurately approximates ‖v‖1 when ε is suffi-
ciently small. Similar to (13), the problem (19) can be equiva-
lently expressed as

min
x,v

{
1
μ
‖v‖1,ε + P (x)

}
subject to Ax − y = v. (20)

The augmented Lagrangian of the problem is

Lε(v,x,w) =
1
μ
‖v‖1,ε + P (x) − 〈w,Ax − y − v〉

+
ρ

2
‖Ax − y − v‖2

2 . (21)

Using the smoothed �1-loss, the v-update step becomes

vk+1 = arg min
v

(
1
μ
‖v‖1,ε +

ρ

2

∥∥∥∥Axk+1−y − v−wk

ρ

∥∥∥∥
2

2

)
.

(22)
As the objective function in (22) is smooth, the subproblem
(22) can be solved by a standard iterative method, such as the
gradient descent method, conjugate gradient method, or quasi-
Newton method. However, using such an iterative method, the
overall algorithm has double loops and therefore is inefficient.
To improve the overall efficiency of the algorithm, we adopt
the standard strategy for accelerating ADMM again, which by-
passes the inner loop in this step via solving (22) approximately.
Specifically, we approximate the term ‖v‖1,ε in the objective
function of (22) by

‖v‖1,ε ≈ ∥∥vk
∥∥

1,ε
+
〈
v − vk , d2(vk )

〉
+

1
2τ2

∥∥v − vk
∥∥2

2

where d2(vk ) = ∇∥∥vk
∥∥

1,ε
with d2(vk )i = vi(v2

i +ε2)−1/2 ,
τ2 > 0 is an approximation parameter. Using this linearization,
the solution of the problem is explicitly given by

vk+1 =
τ2

ρμτ2 + 1

[
1
τ2

vk − d2(vk )

+ ρμ

(
Axk+1 − y − wk

ρ

)]
. (23)

The main consideration of using such a smoothing strategy
is that, the gradient of ‖v‖1,ε is Lipschitz continuous when
ε > 0, e.g., ∇2‖v‖1,ε � 1

ε In . This smoothness property is cru-
cial for the convergence of the new algorithm in the case of a
nonconvex P (·). As will be shown in the convergence analy-
sis in Appendix C, using the smoothed �1-loss, the changes in
the dual iterates can be bounded by the changes in the primal
iterates. This is the key point to show the descent property of
the augmented Lagrangian function which leads to establish-
ment of convergence. Moreover, for the proposed algorithm, the
dominant computational load in each iteration is matrix-vector
multiplication with complexity O(mn). Thus, it scales well for
high-dimension problems.

IV. CONVERGENCE ANALYSIS

This section analyzes the convergence property of the new
algorithm for a generalized nonconvex penalty. While the con-
vergence issue of ADMM has been well addressed for the con-
vex case [47], [53], there have been only a few works reported
very recently on the convergence issue for the nonconvex case
[48]–[50]. The convergence theory in [50] cannot be applied to
the proposed algorithm since it is restricted to the case of that,
the regularization term is a smooth function or a convex non-
smooth function. Meanwhile, since the proposed formulation
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involves a smoothing parameter, the convergence condition of
the proposed ADMM algorithm cannot be directly derived from
the results in [48] and [49]. The following results are derived
following similarly the line in [48], [49]. We first give some
definitions and lemmas in the proof of the main result. All the
proofs are given in Appendix.

Definition 1 (lower semicontinuous function): An extended
real-valued function f is lower semicontinuous at a point x0
if f(x0) ≤ lim inf

x→x0
f(x). If a function is lower semicontinuous

at every point of its domain of definition, then it is a lower
semicontinuous function.

Definition 2 (Kurdyka-Lojasiewicz (KL) function): A proper
function f : Rn → R is said to have the KL property at
x0 ∈ dom∂f if there exists η > 0, a neighborhood V of x0 and
a continuous concave function ϕ : [0, η) → R+ such that: (i)
ϕ(0) = 0 and ϕ is continuously differentiable on (0, η) with pos-
itive derivatives; (ii) for all x ∈ V satisfying f(x0) < f(x) <
f(x0) + η, it holds that ϕ′(f(x) − f(x0))dist(0, ∂f(x)) ≥ 1.
A proper closed function f satisfying the KL property at all
points in dom∂f is called a KL function.

The KL property allows, through a “uniformization” re-
sult inspired by [55] to considerably simplify the main argu-
ments of the convergence analysis and avoid involved induction
reasoning.

Lemma 1: Suppose that P (·) is a closed, proper, lower semi-
continuous function, for any xk ∈ Rn , the minimizer xk+1

given by (17) satisfies

Lε(vk ,xk+1 ,wk ) ≤ Lε(vk ,xk ,wk ) − c0
∥∥xk+1 − xk

∥∥2
2

where

c0 =
ρ

2

(
1
τ1

− λmax(AT A)
)

.

Lemma 2: For any vk ∈ Rm , the minimizer vk+1 given by
(23) satisfies

Lε(vk+1 ,xk+1 ,wk ) ≤ Lε(vk ,xk+1 ,wk ) − c1
∥∥vk+1 − vk

∥∥2
2

where

c1 =
1

μτ2
+

ρ

2
− 1

2με
.

Lemmas 1 and 2 establish the descent properties for the
x- and v-subproblems, respectively.

Lemma 3: Suppose that P (·) is a closed, proper, lower
semicontinuous function, let L̃(v,x,w, ṽ) := Lε(v,x,w) +
c2‖v − ṽ‖2

2 , for (vk ,xk ,wk ) generated via (17), (23) and (16),
if ε > 0 and (24) holds, then

L̃(vk ,xk ,wk ,xk−1) ≥ L̃(vk+1 ,xk+1 ,wk+1 ,xk )

+ c0
∥∥xk+1 − xk

∥∥2
2 + c3

∥∥vk+1 − vk
∥∥2

2

where c2 , c3 > 0 are given by

c2 =
2

ρμ2

(
1
ε

+
1
τ2

)2

c3 =
1
2
ρ − 2

ρμ2

[
2

τ2
2 +

2
τ2ε

+
1
ε2

]
+

2ε − τ2

2μτ2ε
.

Lemma 3 establishes the sufficient decrease property for the
auxiliary function L̃, which indicates that L̃ is nonincreasing
and thus is convergent as it is lower semicontinuous.

Lemma 4: Suppose that P (·) is a closed, proper, lower semi-
continuous function, let zk := (vk ,xk ,wk ) with (vk ,xk ,wk )
generated via (17), (23) and (16), suppose that ε > 0, τ1 <
1/λmax(AT A), and (24) holds, then

lim
k→∞

∥∥zk+1 − zk
∥∥2

2 = 0.

In particular, any cluster point of {zk} is a stationary point
of Lε .

Lemma 5: Suppose that P (·) is a closed, proper, lower
semicontinuous function, let L̃(v,x,w, ṽ) := Lε(v,x,w) +
c2‖v − ṽ‖2 with c2 defined in Lemma 3, suppose that ε > 0,
τ1 < 1/λmax(AT A) and (24) holds, for (vk ,xk ,wk ) gener-
ated via (17), (23) and (16), there exists a constant c4 > 0 such
that

dist(0, ∂L̃(vk+1 ,xk+1 ,wk+1 ,vk ))

≤ c4
(∥∥xk+1 − xk

∥∥
2 +

∥∥vk+1 − vk
∥∥

2 +
∥∥vk − vk−1

∥∥
2

)
.

Lemma 5 establishes a subgradient lower bound for the
iterate gap, which together with Lemma 4 implies that
dist(0, ∂L̃(vk+1 ,xk+1 ,wk+1 ,vk )) → 0 as k → ∞.

Theorem 1: Suppose that P (·) is a closed, proper, lower
semicontinuous, Kurdyka-Lojasiewicz function, ε > 0 and τ1 <
1/λmax(AT A), then, if

ρ >

√
36ε2 + 28τ2ε + 17τ2

2 + τ2 − 2ε

2μτ2ε
(24)

the sequence {(vk ,xk ,wk )} generated by the ADMM algo-
rithm via the three steps (17), (23) and (16) converges to a
stationary point of the problem (20).

In the conditions in Theorem 1, there is no restriction on the
proximal parameter τ2 . That is due to the fact that if (24) is
satisfied, the sufficient decrease property of the v-subproblem
is guaranteed since c1 in Lemma 2 is positive in this case.
However, the value of τ2 would affect the convergence speed of
the algorithm. Intensive numerical studies show that selecting
a value of the same order as ε for τ2 can yield satisfactory
convergence rate.

When ε → 0, the problem (20) reduces to the original prob-
lem (13) and thus the solution of (20) accurately approxi-
mates that of (13). However, from the convergence condition
in Theorem 1, the penalty parameter should be chosen to be
ρ → ∞ in this case. Generally, with a very large value of ρ,
the ADMM algorithm would be very slow and impractical. In
practical applications, selecting a moderate value of ε suffices
to achieve satisfactory performance. Moreover, a standard trick
to speed up the algorithm is to adopt a continuation process
for the penalty parameter. Specifically, we can use a prop-
erly small starting value of the penalty parameter and grad-
ually increase it by iteration until reaching the target value,
e.g., 0 < ρ0 ≤ ρ1 ≤ · · · ≤ ρK = ρK +1 = · · · = ρ. In this case,
Theorem 1 still applies as the value of the penalty parameter
turns into fixed at ρ within finite iterations. Furthermore, with
an initialization which is usually used for nonconvex algorithms,
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the new algorithm often converges quickly even in the case of a
large ρ.

When P (·) is nonconvex, the formulation (19) is nonconvex
and the proposed algorithm may converge to one of its many
local minimizers. In this case, a good initialization is crucial for
the new algorithm to achieve satisfactory performance. Since a
standard CS method (e.g., BPDN or LASSO) may break down
in highly impulsive noise, it is more appropriate to employ
a robust method for initialization such as �1-LA (6). The �1-
LA problem can be solved via the ADMM update steps (17),
(18) and (16), which is guaranteed to converge to the global
minimizer if τ1 < 1/λmax(AT A) [45].

V. NUMERICAL EXPERIMENTS

We evaluate the new method in comparison with L1LS-FISTA
[52], LqLS-ADMM [48], and YALL1 [34]. L1LS-FISTA solves
the �1-LS formulation (4). For this standard CS formulation,
there exist a number of solvers can find the global minimizer of
(4) and achieve the same accuracy, but with different computa-
tional complexity. Among these solvers, ADMM and FISTA are
two of the most computational efficient. LqLS-ADMM solves
the �q -LS formulation (5) based on ADMM. LqLS-ADMM is
run with q = 0.5 and it is guaranteed to converge when the
penalty parameter is properly chosen [48]. YALL1 solves the
robust �1-LA formulation (6) using an ADMM scheme. We
conduct mainly two reconstruction experiments on simulated
vector-signals and images, respectively.

For the proposed method, we use the �q -norm penalty as it
has a flexible parametric form that adapts to different threshold-
ing functions while includes the hard- and soft-thresholding as
special cases, which is termed as LqLA-ADMM in the follow-
ing. It is run with τ1 = 0.99/λmax(AT A), ε = 10−3 , τ2 = ε
and ρ = 3.2

με , and the v-subproblem is updated via (23). Dif-
ferent values of q, q ∈ {0.2, 0.5, 0.7}, are examined for LqLA-
ADMM. We use a stopping tolerance parameter of 10−7 for
LqLA-ADMM. Moreover, a continuation process is used for
the penalty parameter as ρk = 1.02ρk−1 if ρk < ρ and ρk = ρ
otherwise. The two noncnvex algorithms, LqLS-ADMM and
LqLA-ADMM, are initialized by the solution of YALL1. Note
that LqLA-ADMM with q = 1, ε = 0 and updated via the steps
(17), (18) and (16) reduces to YALL1.

We consider two types of impulsive noise. 1) Gaussian mix-
ture noise: we consider a typical two-term Gaussian mixture
model with probability density function (pdf) given by

(1 − ξ)N (0, σ2) + ξN (0, κσ2)

where 0 ≤ ξ < 1 and κ > 1. This model is an approximation
to Middleton’s Class A noise model, where the two parameters
ξ and κ > 1 respectively control the ratio and the strength of
outliers in the noise. In this model, the first term stands for the
nominal background noise, e.g., Gaussian thermal noise, while
the second term describes the impulsive behavior of the noise. 2)
Symmetric α-stable (SαS) noise: except for a few known cases,
the SαS distributions do not have analytical formulations. The
characteristic function of a zero-location SαS distribution can

be expressed as

ϕ(ω) = exp (jaω − γα |ω|α )

where 0 < α ≤ 2 is the characteristic exponent and γ > 0 is
the scale parameter or dispersion. The characteristic exponent
measures the thickness of the tail of the distribution. The smaller
the value of α, the heavier the tail of the distribution and the
more impulsive the noise is. When α = 2, the SαS distribution
becomes the Gaussian distribution with variance 2γ2 . When
α = 1, the SαS distribution reduces to the Cauchy distribution.

For Gaussian and Gaussian mixture noise, we use the signal-
to-noise ratio (SNR) to quantify the strength of noise, which is
defined by

SNR = 20log10

(‖Axo − E{Axo}‖2

‖n‖2

)

where xo denotes the true signal. Since an SαS distribution
with α < 2 has infinite variance, the strength of SαS noise is
quantified by the dispersion γ.

All the compared methods require the selection of the regu-
larization parameter μ, which balances the fidelity and sparsity
of the solution and is closely related to the performance of these
methods. A popular approach is to compute the recovery along
the regularization path (a set of μ), and select the optimal value
based on the statistical information of the noise. More specifi-
cally, for the �1-loss based formulations, the optimal μ can be
selected as the maximum value of μ such that the bound con-
straint on the residual is met, e.g., ‖Ax̂ − y‖1 ≤ δ, where δ
is the estimated first-order moment of the noise. The approach
also applies to the new method for sufficiently small ε. How-
ever, this approach cannot be used in the case of SαS impulsive
noise with α ≤ 1, since the first-order moment of such noise
is infinite. Another effective approach is to learn a value of μ
via cross-validation [51]. In our experiments, to compare the
methods fairly, the regularization parameter in each method is
chosen by providing the best performance in terms of relative
error of recovery.

A. Recovery of Simulated Sparse Signals

In the first experiment, we evaluate the compared methods us-
ing simulated sparse signals in various noise conditions. We use
a simulated K-sparse signal of length n = 512, in which the po-
sitions of the K nonzeros are uniformly randomly chosen while
the amplitude of each nonzero entry is generated according to
the Gaussian distribution N (0, 1). The signal is normalized to
have a unit energy value. The m × n sensing matrix A is chosen
to be an orthonormal Gaussian random matrix with m = 200. A
recovery x̂ is regarded as successful if the relative error satisfies

‖x̂ − xo‖2

‖xo‖2
≤ 10−2 .

Each provided result is an average over 200 independent Monte
Carlo runs. Three noise conditions are considered, Gaussian
noise with SNR = 30 dB, Gaussian mixture noise with ξ = 0.1,
κ = 1000 and SNR = 30 dB, and SαS noise with α = 1 (Cauchy
noise) and γ = 10−4 .
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Fig. 1. Typical convergence behavior of LqLA-ADMM with q = 0.5 (Gaus-
sian mixture noise with ξ = 0.1, κ = 1000 and SNR = 30 dB).

Fig. 1 shows the typical convergence behavior of LqLA-
ADMM with q = 0.5 in two conditions with the v-subproblem
be solved by (18) and (23), respectively. The sparsity of the
signal is K = 30. It can be seen that LqLA-ADMM does not
converge when the v-subproblem is updated via (18).

Fig. 2 presents the successful rate of recovery of the compared
algorithms versus sparsity K in the three noise conditions. It is
clear that in Gaussian noise, L1LS-FISTA and LqLS-ADMM
respectively slightly outperform YALL1 and LqLA-ADMM.
That is in Gaussian noise, the �1-loss does not lead to con-
siderable performance degradation relative to the �2-one which
is optimal in a maximum likelihood sense in this case. More-
over, LqLS-ADMM and LqLA-ADMM significantly outper-
form L1LS-FISTA and YALL1, which demonstrates the supe-
riority of the �q -regularization over the �1-regularization.

In the two impulsive noise conditions, the �1-loss based
YALL1 and LqLA-ADMM algorithms outperform the �2-loss
based L1LS-FISTA and LqLS-ADMM algorithms in most
cases. That demonstrates the robustness of �1 -loss against impul-
sive corruptions in the measurements. Meanwhile, in impulsive
noise, the advantage of �q -regularization over �1-regularization
remains considerable. For example, LqLA-ADMM significantly
outperforms YALL1 while LqLS-ADMM significantly outper-
forms L1LS-FISTA. In the SαS noise condition, LqLA-ADMM
can achieve a rate of successful recovery greater than 80% when
K ≤ 70, while YALL1 achieves such a rate only when K ≤ 30.
Among the three tested values of q (q ∈ {0.2, 0.5, 0.7}) for
LqLA-ADMM, q = 0.2 and q = 0.5 yield better performance
than q = 0.7.

Moreover, it can be seen from Fig. 2(a) and (b) that, with fixed
SNR of 30 dB, the �2-loss yields comparable performance in the
two noise conditions (Gaussian and Gaussian mixture). This is
due to the fact that, the recovery error of the �2-loss based for-
mulation is bounded by the noise variance [54], which does not

Fig. 2. Recovery performance versus sparsity for the compared methods
in different noise conditions (a) Gaussian noise, (b) Gaussian mixture noise,
(c) SαS noise. .

Fig. 3. The two 256 × 256 images used for performance evaluation.
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Fig. 4. Recovery performance of the compared methods on two 256 × 256 images in Gaussian mixture noise with ξ = 0.1, κ = 1000 and SNR = 20 dB.
(a) Shepp-Logan. (b) MRI.

change in different impulsive conditions when the noise power
is fixed. Meanwhile, the �1-loss can yield significantly better
performance in Gaussian mixture noise than that in Gaussian
noise. This is due to the fact that, the recovery error of the �1-
loss based formulation is bounded by the first-order moment
of the noise (this property can be derived via directly extend-
ing [32, Th. 1]), which decreases significantly when the noise
gets more impulsive. Note that, these results hold only when
the noise has finite variance, e.g., Gaussian or Gaussian mixture
noise, and they break down when the noise has infinite variance,
e.g., SαS impulsive noise as shown in Fig. 2(c).

B. Recovery of Images

This experiment evaluates the algorithms on image recovery.
The used images include a synthetic image, “Shepp-Logan”,
and a magnetic resonance imaging (MRI) image, as shown in
Fig. 3. Each image has a size 256 × 256 (n = 65536), and the
measurement number is set to m = round(0.4n). We employ
a partial discrete cosine transformation (DCT) matrix as the

sensing matrix A, which is obtained by randomly selecting
m out of n rows of the full DCT matrix. We use an implicit
representation of this matrix since it is hardly explicitly available
in high-dimensional conditions. Another advantage of using
such a sensing matrix is that the multiplication of A (or AT )
with a vector can be rapidly obtained via picking the discrete
cosine transform of the vector. We use the Haar wavelets as the
basis functions and consider two impulsive noise conditions,
Gaussian mixture noise with ξ = 0.1, κ = 1000 and SNR =
20 dB, and SαS noise with α = 1 and γ = 10−4 . The recovery
performance is evaluated in terms of peak-signal noise ratio
(PSNR).

Fig. 4 shows the recovery performance of the compared algo-
rithms in Gaussian mixture noise. The PSNR results are shown
in Table I. It can be seen that each algorithm can achieve much
higher PSNR in recovering the synthetic image than that in re-
covering the MRI image. This is due the nature that, the Haar
wavelet coefficients of the synthetic image “Shepp-Logan” are
truly sparse (approximately 3.2% nonzeros), while the wavelet
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TABLE I
PSNR OF IMAGE RECOVERY BY THE COMPARED ALGORITHMS IN TWO NOISE CONDITIONS

Method L1LS-FISTA LqLS-ADMM YALL1 LqLA-ADMM LqLA-ADMM LqLA-ADMM
(q = 0.5) (q = 0.2) (q = 0.5) (q = 0.7)

Gaussian mixture Logan 33.24 36.58 37.24 40.62 40.55 39.87
MRI 28.17 28.57 27.79 28.04 28.43 28.77

SαS Logan 12.33 12.25 28.37 29.76 33.73 35.96
MRI 14.60 14.53 24.56 25.51 27.05 27.29

Fig. 5. Recovery performance of the compared methods on two 256 × 256 images in SαS noise with α = 1 and γ = 10−4 . (a) Shepp-Logan. (b) MRI.

coefficients of a real-life image are not sparse but rather ap-
proximately follow an exponential decay, which is referred to
as compressible. Moreover, LqLA-ADMM significantly outper-
forms the other algorithms in recovering “Shepp-Logan”, e.g.,
the improvements attained by LqLA-ADMM (with q = 0.2)
over L1LS-FISTA, LqLS-ADMM and YALL1 are 7.38, 4.04
and 3.38 dB, respectively. However, this advantage decreases
in recovering the MRI image, e.g., the improvements attained
by LqLA-ADMM (with q = 0.7) over L1LS-FISTA, LqLS-
ADMM and YALL1 are 0.6, 0.2 and 0.98 dB, respectively. The

results indicate that the advantage of an �q -regularization based
algorithm over an �1-regularization based algorithm generally
decreases as the compressibility of the image decreases.

Fig. 5 presents the recovery performance of the compared
algorithms in the SαS noise condition. The PSNR results are
shown in Table I. The considered SαS noise with α = 1 con-
tains extremely large outliers and is more impulsive than the
Gaussian mixture noise. It can be seen in Fig. 5 that the �2-loss
based algorithms, L1LS-FISTA and LqLS-ADMM, break down,
while the �1-loss based algorithms, YALL1 and LqLA-ADMM,
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Fig. 6. PSNR versus optimization iterations for the compared algorithms in
recovering the Shepp-Logan image. (a) Gaussian mixture noise. (b) SαS noise.

work well. LqLA-ADMM again achieves the best performance,
and its advantage over YALL1 is more significant in this noise
condition than that in the Gaussian mixture noise condition
in recovering the MRI image. For example, in recovering the
MRI image, the improvement attained by LqLA-ADMM (with
q = 0.7) over YALL1 in Gaussian mixture noise is 0.98 dB,
while that in SαS noise is 2.73 dB.

Moreover, the results show that in recovering the MRI im-
age, for LqLA-ADMM, q = 0.5 and q = 0.7 yield better per-
formance than q = 0.2, which is different form the results in
the previous experiment, where q = 0.2 and q = 0.5 generate
significantly better performance than q = 0.7 in recovering sim-
ulated sparse signals. This is due to the nature that, real-life im-
ages are not strictly sparse as simulated sparse signals but rather
compressible, e.g., with wavelet coefficients approximately fol-
low an exponential decay.

Fig. 6 presents a typical plot of PSNR against optimiza-
tion iterations for the compared algorithms in recovering the
Shepp-Logan image. It can be observed that the proposed al-
gorithm needs more iterations to converge than L1LS-FISTA,
LqLS-ADMM, and YALL1, especially for small q. Simi-
lar to L1LS-FISTA, LqLS-ADMM, and YALL1, the pro-
posed LqLA-ADMM algorithm is also a first-order algorithm

and scales well for large-scale problems, as the dominant
computational load in each iteration is matrix-vector multipli-
cation with complexity O(mn).

VI. CONCLUSION

This work introduced a robust formulation for sparse recov-
ery, which improves the �1-LA formulation via replacing the
�1-regularization by a generalized nonconvex regularization.
A first-order algorithm based on ADMM has been developed
to efficiently solve the nonconvex and nonsmooth minimiza-
tion problem. In developing the new algorithm, a smoothing
strategy on the �1-loss function has been used to make it con-
vergent. Moreover, a sufficient condition for the convergence
of the new algorithm has been derived for a generalized non-
convex penalty. Simulation results on recovering both sparse
vector-valued signals and images demonstrated that, in impul-
sive noise, the new method offers considerable performance
gain over the methods which solve the �1-LS, �q -LS, and �1-LA
formulations.

APPENDIX A
PROOF OF LEMMA 1

Let h1(x) = ρ
2

∥∥Ax − y − vk − wk/ρ
∥∥2

2 , the x-subpro-
blem in fact minimizes the following approximated objective

Qxk (x) = P (x) +
〈
x − xk ,∇h1(xk )

〉
+

ρ

2τ1

∥∥x − xk
∥∥2

2 .

From the definition of xk+1 as a minimizer of Qxk (x), we have

Qxk (xk+1)

= P (xk+1) +
〈
xk+1 − xk ,∇h1(xk )

〉
+

ρ

2τ1

∥∥xk+1 − xk
∥∥2

2

≤ Qxk (xk ) = P (xk ).
(25)

Further, the Hessian of h1(x) is

∇2h1(x) = ρAT A

which implies that ∇h1(x) is ρλmax(AT A)-Lipschitz contin-
uous. Thus, for any xk ,xk+1 ∈ Rn we have

h1(xk+1) ≤ h1(xk ) +
〈
xk+1 − xk ,∇h1(xk )

〉

+
ρλmax(AT A)

2

∥∥xk+1 − xk
∥∥2

2 . (26)

It follows from (25) and (26) that

P (xk+1) + h1(xk+1)

≤ P (xk+1) + h1(xk ) +
〈
xk+1 − xk ,∇h1(xk )

〉

+
ρλmax(AT A)

2

∥∥xk+1 − xk
∥∥2

2

≤ P (xk ) + h1(xk ) − c0
∥∥xk+1 − xk

∥∥2
2

which results in Lemma 1.
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APPENDIX B
PROOF OF LEMMA 2

First, the Hessian of ‖v‖1,ε is

∇2‖v‖1,ε = ε2diag
{

(v2
1+ε2)−

3
2 , · · · , (v2

N +ε2)−
3
2

}
� 1

ε
In

(27)
which implies that ∇‖v‖1,ε is 1

ε -Lipschitz continuous, thus, for
any vk ,vk+1 ∈ Rm we have∥∥vk+1

∥∥
1,ε

≤ ∥∥vk
∥∥

1,ε
+ 〈vk+1 − vk ,∇‖vk‖1,ε〉

+
1
2ε

∥∥vk+1 − vk
∥∥2

2 .
(28)

Let h2(v) = ρ
2

∥∥Axk+1 − y − v − wk/ρ
∥∥2

2 , the v-subpro-
blem actually minimizes the following approximated objective

Gvk (v)=
1
μ

〈
v − vk ,∇∥∥vk

∥∥
1,ε

〉
+

1
2μτ2

∥∥v − vk
∥∥2

2 + h2(v).

(29)
Since Gvk (v) is ( 1

μτ2
+ ρ)-strongly convex, for any vk ∈ Rm

we have

Gvk (vk ) ≥ Gvk (vk+1) +
〈
vk − vk+1 ,∇Gvk (vk+1)

〉

+
1
2

(
1

μτ2
+ ρ

)∥∥vk − vk+1
∥∥2

2 . (30)

From the definition of vk+1 as a minimizer of Gvk (v), we
have ∇Gvk (vk+1) = 0. Further, since Gvk (vk ) = h2(vk ), it
follows from (29) and (30) that

1
μ

〈
vk+1 − vk ,∇∥∥vk

∥∥
1,ε

〉
+ h2(vk+1)

≤ h2(vk ) −
(

1
μτ2

+
ρ

2

)∥∥vk+1 − vk
∥∥2

2

which together with (28) yields

1
μ

∥∥vk+1
∥∥

1,ε
+ h2(vk+1)

≤ 1
μ

∥∥vk
∥∥

1,ε
+ h2(vk ) − c1

∥∥vk+1 − vk
∥∥2

2

which finally results in Lemma 2.

APPENDIX C
PROOF OF LEMMA 3

First, we show that the changes in the dual iterates can be
bounded by the changes in the primal iterates. Observe that the
approximated v-subproblem actually minimizes the objective
Gvk (v) given in (29), whose minimizer vk+1 satisfies

∇∥∥vk
∥∥

1,ε
+

1
τ2

(
vk+1 − vk

)

+ μρ
(
Axk+1 − y − vk+1 − wk/ρ

)
= 0. (31)

Substituting (16) into (31) yields

wk+1 =
1
μ
∇∥∥vk

∥∥
1,ε

+
1

μτ2
(vk+1 − vk ). (32)

Then, it follows that

∥∥wk+1 − wk
∥∥2

2

≤ 1
μ2

(∥∥∥∇∥∥vk
∥∥

1,ε
−∇∥∥vk−1

∥∥
1,ε

∥∥∥
2

+
1
τ2

∥∥vk+1 − vk
∥∥

2

+
1
τ2

∥∥vk − vk−1
∥∥

2

)2

≤ 1
μ2

(
1
τ2

∥∥vk+1 − vk
∥∥

2 +
(

1
ε

+
1
τ2

)∥∥vk − vk−1
∥∥

2

)2

≤ 2
μ2τ 2

2

∥∥vk+1 − vk
∥∥2

2 +
2
μ2

(
1
ε

+
1
τ2

)2 ∥∥vk − vk−1
∥∥2

2

(33)

where the second inequality follows from (27).
From (16) and the definition of Lε , we have

Lε(vk+1 ,xk+1 ,wk+1) − Lε(vk+1 ,xk+1 ,wk )

=
1
ρ

∥∥wk+1 − wk
∥∥2

2 . (34)

Then, with the use of (33), it follows from Lemma 1, Lemma 2
and (34) that

Lε(vk+1 ,xk+1 ,wk+1) − Lε(vk ,xk ,wk )

≤ −c0
∥∥xk+1 − xk

∥∥2
2 −

(
c1 − 2

ρμ2τ 2
2

)∥∥vk+1 − vk
∥∥2

2

+
2

ρμ2

(
1
ε

+
1
τ2

)2 ∥∥vk − vk−1
∥∥2

2

which consequently results in Lemma 3, where c3 is positive
when (24) holds. Moreover, it is easy to see that, when (24)
is satisfied, c1 in Lemma 2 is also positive, which implies the
sufficient decrease of Lε by the v-subproblem updated via (23).

APPENDIX D
PROOF OF LEMMA 4

First, we show the sequence {zk} generated via (17), (23)
and (16) is bounded. From (32), we have

∥∥wk
∥∥2

2 ≤ 1
μ

(∥∥∥∇∥∥vk−1
∥∥

1,ε

∥∥∥
2

+
1
τ2

∥∥vk − vk−1
∥∥

2

)2

≤ 2
μ2

∥∥∥∇∥∥vk−1
∥∥

1,ε

∥∥∥2

2
+

2
μ2τ 2

2

∥∥vk − vk−1
∥∥2

2

≤ 2n

μ2 +
2

μ2τ 2
2

∥∥vk − vk−1
∥∥2

2 (35)

where the last inequality follows from ‖∇‖vk‖1,ε‖2
2 ≤ n when

ε > 0. Define z̃k := (vk ,xk ,wk ,xk−1), under the assumption
that L̃(z̃k ) is lower semicontinuous, it is bounded from below.
Further, when (24) holds, L̃(z̃k ) is nonincreasing by Lemma 3,
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thus it is convergent. Then, form the definition of L̃, we have

L̃(z̃1) ≥ L̃(z̃k )

=
1
μ

∥∥vk
∥∥

1,ε
+ P (xk ) +

ρ

2

∥∥∥∥Axk − y − vk − wk

ρ

∥∥∥∥
2

2

− 1
2ρ

∥∥wk
∥∥2

2 + c2
∥∥vk − vk−1

∥∥2
2

≥ 1
μ

∥∥vk
∥∥

1,ε
+ P (xk ) +

ρ

2

∥∥∥∥Axk − y − vk − wk

ρ

∥∥∥∥
2

2

− n

ρμ2 +
(

c2 − 1
ρμ2τ 2

2

)∥∥vk − vk−1
∥∥2

2

where the last inequality follows from (35). Since c2 > 1
ρμ2 τ 2

2
,

when P (·) is coercive (e.g., for the hard-thresholding, soft-
thresholding, SCAD, MC, and �q -norm penalties), and by (35),
it is easy to see that vk , xk and wk are bounded.

Since z̃k is bounded, there exists a convergent subsequence
z̃kj which converges to a cluster point z̃∗. Moreover, L̃(z̃k ) is
convergent and L̃(z̃k ) ≥ L̃(z̃∗) for any k if c3 > 0. Then, it
follows from Lemma 3 that

c0

N∑
k=1

∥∥xk+1 − xk
∥∥2

2 + c3

N∑
k=1

∥∥vk+1 − vk
∥∥2

2

≤
N∑

k=1

[
L̃(z̃k ) − L̃(z̃k+1)

]

= L̃(z̃1) − L̃(z̃k+1)

≤ L̃(z̃1) − L̃(z̃∗) < ∞.

Let N → ∞, since c0 > 0 and c3 > 0 when τ1 <
1/λmax(AT A) and (24) are satisfied, we have

∞∑
k=1

∥∥xk+1 − xk
∥∥2

2 < ∞

∞∑
k=1

∥∥vk+1 − vk
∥∥2

2 < ∞

which together with (33) implies
∞∑

k=1

∥∥wk+1 − wk
∥∥2

2 < ∞.

Thus, we have lim
k→∞

∥∥zk+1 − zk
∥∥2

2 = 0.

Next, we show that any cluster point of the sequence {zk}
generated via (17), (23) and (16) is a stationary point of (21).
From the optimality conditions, the sequence generated via (17),
(23) and (16) satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ∈ ∂P (xk+1) − AT wk+1 + ρAT (vk+1 − vk )

+
ρ

τ1
(xk+1 − xk ),

0 =
1
μ
∇∥∥vk+1

∥∥
1,ε

+ wk+1 +
1

μτ2
(vk+1 − vk ),

wk+1 = wk − ρ(Axk+1 − y − vk+1).

(36)

Let {zkj } be a convergent subsequence of {zk}, since
lim
k→∞

∥∥zk+1 − zk
∥∥2

2 = 0, zkj and zkj +1 have the same limit

point z∗ := (v∗,x∗,w∗). Moreover, since L̃(z̃k ) is convergent,
P (xk ) is also convergent. Then, passing to the limit in (36)
along the subsequence {zkj } yields

AT w∗ ∈ ∂P (x∗), −w∗ =
1
μ
∇‖v∗‖1,ε , Ax∗ − y = v∗.

In particular, z∗ is a stationary point of Lε .

APPENDIX E
PROOF OF LEMMA 5

Let z̃k := (vk ,xk ,wk ,xk−1), from the definition of
L̃(z̃k+1), we have

∂xL̃(z̃k+1) = ∂P (xk+1) − AT wk+1 + AT (wk − wk+1)

which together with the first relation in (36) yields

ρAT (vk − vk+1) +
ρ

τ1
(xk − xk+1)

+ AT (wk − wk+1) ∈ ∂xL̃(z̃k+1).

Moreover, we have

∇v L̃(z̃k+1)

=
1
μ
∇∥∥vk+1

∥∥
1,ε

+ wk+1−ρ(wk −wk+1)+2c2(vk+1−vk )

= ρ(wk+1 − wk ) +
(

2c2 − 1
μτ2

)
(vk+1 − vk )

where the second equality follows from the second relation in
(36). Similarly,

∇ṽ L̃(z̃k+1) = 2c2(vk+1 − vk ),

∇w L̃(z̃k+1) = Axk+1 − y − vk+1 =
1
ρ
(wk − wk+1).

Thus, we can find a constant c5 > 0 such that

dist(0, ∂L̃(z̃k+1))

≤ c5(
∥∥xk+1 − xk

∥∥
2 +

∥∥vk+1 − vk
∥∥

2 +
∥∥wk − wk+1

∥∥
2)

which together with (33) consequently results in Lemma 5.

APPENDIX F
PROOF OF THEOREM 1

Let zk := (vk ,xk ,wk ), based on the above lemmas, the rest
proof of Theorem 1 is to show that the sequence {zk} has finite
length, i.e.,

∞∑
k=0

∥∥zk+1 − zk
∥∥

2 < ∞ (37)

which implies that {zk} is a Cauchy sequence and thus is conver-
gent. Finally, the property (37) together with Lemma 4 implies
that the sequence {zk} converges to a stationary point ofLε . The
derivation of (37) relies heavily on the KL property of L̃, which
holds if the penalty P (·) is a KL function. This is the case of the
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hard-thresholding, soft-thresholding, SCAD, MC and �q -norm
penalties with 0 ≤ q ≤ 1. With the above lemmas, the proof of
(37) follows similarly the proof of [48, Th. 3] with some minor
changes, thus is omitted here for succinctness.
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