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Abstract—Accurate localization in harsh indoor environments
has long been a challenging problem due to the presence of
multipath. Since joint direction-of-arrival (DOA) and time delay
(TD) estimation has the capability to separate the line-of-sight
(LOS) signal from multipath signals in the TD space, it recently
becomes a key technique for accurate indoor localization in
next generation WiFi and 5G networks. This paper addresses
the problem of joint azimuth, elevation and TD estimation
of multiple reflections of a known signal. First, we propose
an efficient approximate maximum likelihood (AML) algorithm
for this problem, which updates the DOA and TD parameters
alternatingly. This algorithm applies to arbitrarily distributed
(planar or 3D) arrays. Then, we present closed-form Cramer-
Rao bound (CRB) for joint DOA and TD estimation, based on
which we provide further analysis to show the benefit of joint
DOA and TD estimation over DOA-only estimation. Although the
benefit of joint estimation has been empirically shown long ago,
our analysis is the first theoretical proof of it. Finally, simulation
results have been provided to demonstrate the theoretical finding
and the effectiveness of the new algorithm. Matlab code for the
new algorithm is available at https://github.com/FWen/JADE.git.

Index Terms—Direction-of-arrival estimation, time delay es-
timation, maximum likelihood, Cramer-Rao bound, multipath,
indoor localization, channel state information.

I. INTRODUCTION

Accurate localization is of great importance in many e-
merging commercial and public safety applications, such as
augmented reality, social networking, and retail shopping
[1], [2], [37], [38]. Although accurate localization in harsh
indoor environments has long been a challenging problem
due to the presence of multipath and nonline-of-sight (NLOS)
propagation [40], it is commonly expected to be achieved in
next generation WiFi and 5G mobile communication networks
[3]–[6]. Specifically, in next generation WiFi and 5G networks,
two favorable opportunities arise for achieving high-accuracy
indoor localization. First, WiFi access points and 5G base
stations are incorporating ever-increasing numbers of antennas
to bolster capacity and coverage with multiple-input multiple-
output (MIMO) techniques. Second, the used signals have
wider bandwidth (e.g., towards one hundred MHz or even
more). More antennas facilitate accurate direction-of-arrival
(DOA) estimation. Meanwhile, wider bandwidth facilitates
accurate time delay (TD) estimation and, more importantly,
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facilitates reliable separation of the line-of-sight (LOS) signal
from multipath signals. In this context, joint azimuth, eleva-
tion angles and TD estimation becomes a key technique for
high-accuracy 3-dimensional (3D) indoor localization in next
generation WiFi and 5G networks [7]–[9].

In the past two decades, a number of methods for joint
DOA and TD estimation have been proposed, e.g., [10]–[23],
[39] and references therein. For example, maximum likelihood
(ML) methods have been developed in [10], [22], whilst more
efficient subspace-based methods have been proposed in [11]–
[21]. Compared with traditional DOA-only estimation methods
(e.g., [24]–[26], [41]), joint DOA and TD estimation methods
have shown significant superiority, since such methods fully
exploit the spatial diversity as well as temporal diversity in
estimating the multipath channel.

While the above works consider joint azimuth and TD
estimation, this work addresses the joint azimuth, elevation and
TD estimation problem. Generally, simultaneous estimation of
the azimuth, elevation angles and TDs is far more complicated
than joint azimuth and elevation estimation or joint azimuth
and TD estimation, because the two angles and the delay
need to be estimated jointly. For this problem, a MUSIC-
like method has been proposed in [27], which requires a 3D
search of the 3D MUSIC spectrum. More efficient subspace
based methods have been proposed in [28], [29], but they are
restricted to special arrays, e.g., uniform rectangular planar
array [28] and uniform circular array (UCA) [29]. In compar-
ison, the proposed approximate maximum likelihood (AML)
method in this work is more efficient and applies to arbitrarily
distributed (planar or 3D) arrays. Moreover, unlike [27], the
CRB is provided in closed-form and concentrated to the DOA-
block and TD-block, which facilitates further analysis. The
main contributions of this work are as follows.

A. Contributions

First, we propose an efficient AML algorithm, which it-
eratively update the DOA (azimuth and elevation) and TD
parameters in an alternating manner.

Second, the CRB for joint azimuth, elevation and TD
estimation has been provided in closed-form, based on which
we provide further analysis to show the advantage of joint
DOA and TD estimation over DOA-only estimation. Although
such advantage has been empirically shown long ago, our
analysis is the first theoretical proof of it. The main results
are as follows.

1) The DOA-related CRB for joint DOA and TD estimation
is upper bounded by the associated CRB for DOA-only
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estimation. Further, in some special conditions, e.g., all
the multipath signals have the same delay and/or there
exists only a single path, these two CRBs are equivalent.

2) DOA overlapped signals (or signals with DOAs too close
to be resolved by DOA-only estimation) can be resolved
in the TD space via joint DOA and TD estimation, and
vice versa.

3) For joint DOA and TD estimation, both the CRBs for
DOA and TD are non-increasing functions with respect
to the signal bandwidth.

Finally, we have evaluated the new algorithm and theoretical
funding via various simulations.

B. Outline and Notations

The rest of this paper is organized as follows. Section II
introduces the signal model and the Gaussian ML estimator.
In Section III, we detail the new AML algorithm. Section
IV contains the CRB for joint azimuth, elevation and TD
estimation, and provides some analysis based on the CRB.
Section V contains experimental results. Finally, Section VI
ends the paper with concluding remarks.

Notations: (·)∗, (·)T , and (·)H denote the conjugate, trans-
pose and Hermitian transpose, respectively. ‖ · ‖2, E(·), det(·),
Tr(·), <(·) and =(·) stand for the norm, expectation, determi-
nant, trace, and real and imaginary part operators, respectively.
IM and 0M stand for M × M identity and zero matrices,
respectively. 1M stands for an M×1 vector with each element
be unit. For a vector v, diag(v) is a diagonal matrix with
diagonal elements be v. blkdiag(M1, · · · ,Mn) is a block-
diagonal matrix with M1, · · · ,Mn on the diagonal. � denotes
the Hadamard product. M ≥ 0 means that M is positive-
semidefinite. rank(M) denotes the rank of the matrix M.

II. SIGNAL MODEL AND MAXIMUM LIKELIHOOD
ESTIMATOR

In this section, we introduce the signal model and present
the Gaussian ML estimator.

A. Signal Model

Consider an M sensor arbitrarily distributed (2D planar
or 3D) array receiving L reflections of a narrowband far-
field signal s(t) with TDs τ1, · · · , τL, incident azimuth angles
θ1, · · · , θL and incident elevation angles φ1, · · · , φL. The
complex snapshot of the m-th sensor at time tn can be
modeled as

xm(tn) =
L∑
l=1

βlam(θl, φl)s(tn − τl) + wm(tn) (1)

for n = 1, · · · , N , where βl is a complex coefficient rep-
resenting the attenuation factor (phase shift and amplitude
attenuation) of the l-th reflection. The complex channel fadings
are assumed to be constant within a data burst such that βl,
l ∈ {1, · · · , L}, is not dependent on t. The complex signal
s(t) is known. wm(tn) is zero-mean white Gaussian noise
which is independent to the source signal. Let χm ∈ R3×1

denote the 3D position vector of the m-th sensor, then, the

steering response of the m-th sensor toward direction (θ, φ)

can be expressed as am(θ, φ) = e−j2πχ
T
mρ/λ, where λ is

the wavelength, ρ = [cos θ cosφ, sin θ cosφ, sinφ]T is the
3D unit vector associated with (θ, φ), and χTmρ is the range
difference between the signals received at the m-th sensor
and the origin (reference point). In a vector form, the M × 1
snapshot vector of the (discrete) array outputs can be expressed
as

x(tn) =
L∑
l=1

βla(θl, φl)s(tn − τl) + w(tn) (2)

where

x(tn) = [x1(tn), · · · , xM (tn)]T

w(n) = [w1(tn), · · · , wM (tn)]T

a(θ, φ) = [a1(θ, φ), · · · , aM (θ, φ)]T .

In this work, we consider the frequency-domain model as
it facilitates the development of efficient ML estimator. In the
frequency-domain, the signal of the m-th sensor at the k-th
frequency bin (or subcarrier), 0 ≤ k ≤ K, can be modeled as

Xm(ωk) =
L∑
l=1

βlam(θl, φl)S(ωk)e−jωkτl +Wm(ωk) (3)

where K is the number of the effective frequency bins (or
subcarriers) of the signal, Xm(ωk), S(ωk) and Wm(ωk) are
respectively the discrete Fourier transform (DFT) of xm(tn),
s(tn) and wm(tn). In a vector form, the array outputs in the
frequency-domain can be expressed as

x(k) = D(k)β + w(k) (4)

where β = [β1, · · · , βL]T and

x(k) = [X1(ωk), · · · , XM (ωk)]T

w(k) = [W1(ωk), · · · ,WM (ωk)]T

D(k) = [a(θ1, φ1)e−jωkτ1 , · · · ,a(θL, φL)e−jωkτL ]S(ωk).

Note that, in some applications such as in WiFi and mobile
wireless communication systems, the channel state information
(CSI) may be given instead of the time-domain samples. The
CSI is usually obtained via a deconvolution of the known
training sequence and pulse shape function. In this case, the
proposed method can be directly applied via setting S(ωk) = 1
in the model (4).

B. Gaussian Maximum Likelihood Estimator
We assume the noise spectrum vector w(k) is zero-

mean circularly complex Gaussian distributed with variance
σ2 in each element, i.e., E{w(k)wH(k)} = σ2IM and
E{w(k)wT (k)} = 0M for k = 0, · · · ,K. Note that, due to
the transformation to the frequency-domain and by the central
limit theorem, the noise spectrum vector w(k) asymptotically
approaches a Gaussian distribution, even when the actual time-
domain noise follows an arbitrary (independent and identically
distributed) distribution (with bounded variance) other than
Gaussian. In this sense, in some practical cases, the frequency-
domain model may be more favorable than the time-domain
model, as the noise model in the former is more reliable than
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that in the latter. Let θ = [θ1, · · · , θL]T , φ = [φ1, · · · , φL]T ,
τ = [τ1, · · · , τL]T and

Ω = [θT ,φT , τT ,βT , σ2]T

which contains all the unknown parameters in the model.
Then, the likelihood function of Ω can be expressed as

f (Ω) =
1

(πσ2)
MN

exp

{
− 1

σ2

K∑
k=1

‖g(k)‖2
}

with
g(k) = x(k)−D(k)β.

The according log-likelihood is

L (Ω) = −MN log σ2 − 1

σ2

K∑
k=1

‖g(k)‖2

and the ML estimator for Ω is given by

Ω̂ = arg max
Ω
L (Ω) .

As the dependency of the log-likelihood function with respect
to θ, φ, τ and β is through ‖g(k)‖2, and ‖g(k)‖2 is
independent of σ2, the concentrated ML estimator for θ, φ,
τ and β is given by(

θ̂, φ̂, τ̂ , β̂
)

= arg min
θ,φ,τ ,β

K∑
k=1

‖g(k)‖2. (5)

Since only the TDs and DOAs are of interest, we can further
concentrate the ML estimator on these blocks of parameters.
Specifically, let

x̃ = [xT (1), · · · ,xT (K)]T

D̃ = [DT (1), · · · ,DT (K)]T

the formulation (5) can be more compactly written as(
θ̂, φ̂, τ̂ , β̂

)
= arg min

θ,φ,τ ,β

∥∥∥x̃− D̃β
∥∥∥2

. (6)

For fixed θ, φ and τ , minimizing (6) with respect to β yields

β̂ = (D̃HD̃)−1D̃H x̃

which, when substituted into (6), yields the ML estimator for
θ, φ and τ as (

θ̂, φ̂, τ̂
)

= arg min
θ,φ,τ

∥∥P⊥
D̃

x
∥∥2

(7)

where P⊥
D̃

is the complement orthogonal projection defined as
P⊥

D̃
= I− D̃(D̃HD̃)−1D̃H .

For L multipath reflections, direct minimization of (7)
involves a 3L-dimensional searching procedure, which is
prohibitive for practical applications even for a moderate value
of L. In the following, we develop a more efficient iterative
algorithm to approximately solve the ML formulation.

III. AN APPROXIMATE MAXIMUM LIKELIHOOD
ALGORITHM

In this section, we propose an iterative algorithm to approx-
imately solve the ML formulation. The iterative scheme used

in this algorithm is similar to the iterative algorithms in [10],
[30]. The proposed AML algorithm updates the DOA (azimuth
and elevation) and TD parameters alternatingly in solving the
ML formulation. Intensive numerical studies show that, with
a proper initialization, the alternating procedure of the AML
algorithm can achieve sufficient good performance within a
few iterations.

A. Proposed AML Algorithm

Define

A(θ,φ) = [a(θ1, φ1), · · · ,a(θL, φL)]

r(k, τ ) = [e−jωkτ1 , · · · , e−jωkτL ]TS(ωk)

and

u(k, τ ) = diag{β}r(k, τ ) (8)
B = A(θ,φ)diag{β}. (9)

First, we derive an estimator for θ, φ and β conditioned on
τ . Specifically, given an estimation of τ , denoted by τ̂ , the
minimization problem (5) can be rewritten as(

θ̂, φ̂, β̂
)

= arg min
θ,φ,β

K∑
k=1

‖x(k)−Br(k, τ̂ )‖2. (10)

Instead of minimizing (10) directly with respect to θ, φ and
β, we minimize it first with respect to the unstructured matrix
B, for which the explicit solution is given by

B̂ =

[
K∑
k=1

x(k)rH(k, τ̂ )

][
K∑
k=1

r(k, τ̂ )rH(k, τ̂ )

]−1

. (11)

Let b̂l denote the l-th column of B̂, i.e., B̂ = [b̂1, · · · , b̂L].
From (9), only the l-th column of B is dependent on θl, φl
and βl. Thus, given an estimation B̂, we can estimate θl, φl
and βl via the following formulation(

θ̂l, φ̂l, β̂l

)
= arg min

θ,φ,β

∥∥∥b̂l − βa(θ, φ)
∥∥∥2

. (12)

for l = 1, · · · , L. The solution to (12) is given by(
θ̂l, φ̂l

)
= arg max

θ,φ

‖b̂Hl a(θ, φ)‖
2

‖a(θ, φ)‖2
(13)

and

β̂l =
aH(θ̂l, φ̂l)b̂l

‖a(θ̂l, φ̂l)‖
2 . (14)

Next, we estimate τ and β conditioned on θ and φ.
Specifically, given an estimation of θ and φ, denoted by θ̂
and φ̂, the minimization problem (5) can be rewritten as(

τ̂ , β̂
)

= arg min
τ ,β

K∑
k=1

∥∥∥x(k)−A(θ̂, φ̂)u(k, τ )
∥∥∥2

. (15)

In a similar manner to (10), we do not minimize (15) directly
with respect to τ and β rather than minimize it first with
respect to the unstructured vectors u(k, τ ) for k = 1, · · · ,K,



0018-9545 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2794322, IEEE
Transactions on Vehicular Technology

4

which yields the following explicit solution

û(k, τ ) =
[
AH(θ̂, φ̂)A(θ̂, φ̂)

]−1

AH(θ̂, φ̂)x(k). (16)

Define

V̂ = [v̂1, · · · , v̂L] =

 ûT (1, τ )/S(ω1)
...

ûT (K, τ )/S(ωK)

 .
From (8), the dependency of u(k, τ ) with respect to τl and
βl is only through the l-th element of u(k, τ ). Thus, given
an estimation [v̂1, · · · , v̂L], we can estimate τl and βl via the
following formulation(

τ̂l, β̂l

)
= arg min

τ,β
‖v̂l − βt(τ)‖2 (17)

for l = 1, · · · , L, where t(τ) = [e−jω1τ , · · · , e−jωKτ ]T . The
solution to (17) is given by

τ̂l = arg max
τ

∥∥tH(τ)v̂l
∥∥2

(18)

and
β̂l =

1

N
tH(τ̂l)v̂l. (19)

Since the ML formulation is nonconvex, the performance of
the ML estimator is closely related to the initialization. In the
following, we give an initialization scheme for the azimuth and
elevation angles which follows similarly to [31]. Specifically,
given the estimated parameters of the first (l − 1) multipath
signals, denoted by (l−1)-dimensional vectors θ̂(l−1), φ̂(l−1),
τ̂ (l−1) and β̂(l−1), the azimuth and elevation angles of the l-th
multipath signal are estimated as(

θ̂l, φ̂l

)
= arg max

θ,φ
aH(θ, φ)R(l)

x a(θ, φ) (20)

where

R(l)
x =

1

N

N∑
n=1

x(l)(tn)
(
x(l)(tn)

)H
with

x(l)(tn) = x(tn)−
l−1∑
i=1

β̂
(l−1)
i a(θ̂

(l−1)
i , φ̂

(l−1)
i )s(tn − τ̂ (l−1)

i ).

In fact, R
(l)
x is the covariance matrix of the residual after

subtracting the contributions of the first (l − 1) multipath
signals using the estimated parameters. If only the CSI is
given such as in WiFi, i.e., given the frequency data (4) with
S(ωk) = 1, we can obtain an initialization for the azimuth
and elevation of the l-th multipath signal in a similar manner
via solving (20) with the use of

R(l)
x =

1

K

K∑
k=1

x(l)(k)
(
x(l)(k)

)H
which is covariance matrix of the residual computed in the
frequency-domain with

x(l)(k) = x(k)−
l−1∑
i=1

β̂
(l−1)
i a(θ̂

(l−1)
i , ϕ̂

(l−1)
i )e−jωk τ̂

(l−1)
i .

The proposed AML algorithm is summarized as follows. As
will be shown in Section V, this new algorithm can achieve
satisfactory performance in only a few iterations.

AML Algorithm

For: l = 1, · · · , L
Estimate θl and φl using (20) to obtain an initialization
for θ(l) and φ(l).
While not converged do

1) Estimate the TDs via (16) and (18), to obtain τ̂ (l).
2) Estimate the unstructured matrix B via (11) using

the so-obtained τ̂ (l).
3) Using B̂, estimate the azimuth angle θ(l) and

elevation angle φ(l) via (13).
End while

End for
Output: θ̂, φ̂, τ̂

The computational complexity of (16) is O(K(L3 +ML2 +
M2L+L2)), while that of (18) is O(KLNt) with Nt be the
grid number in the time delay domain. In (11), it involves the
matrix inverse and matrix multiplication, the computational
complexity is O(KML + KL2 + ML2 + L3). In (13), the
computational complexity is O(MLNd), where Nd is the
grid number in the DOA domain. The total computational
complexity in each iteration is O(K(L3 + ML2 + M2L +
L2) +KML+ML2 + L3 +KLNt +MLNd).

B. Efficient Implementation of the AML Algorithm
In the above AML algorithm, a 2D search is required in

estimating the azimuth and elevation via (13), which is the
dominant computational complexity in each iteration. Since
the subproblem (13) is only dependent on the azimuth and
elevation parameters of a single path, we can estimate them in
an alternative manner. For example, given the latest estimated
elevation of the l-th path, denoted by φ̂l, we first estimate θl
with fixed φ̂l to obtain θ̂l, then, we obtain a refined estimate
of φl with fixed θ̂l. This procedure is repeated until converged,
which often converges within a few iterations. In such a
manner, the 2D search in (13) is replaced by multiple 1D
searches.

Moreover, a warm-start strategy can be used to further
considerably reduce the computational burden of this iterative
algorithm. Specifically, in solving (13), we can restrict the
searching range of θl and φl based on their latest estimates
or initialization, i.e., using a properly small searching range
for these two parameters around their latest estimated values
given by the latest iteration or initialization. This strategy can
also be used in estimating the TDs via (18).

Furthermore, to efficiently obtain an initialization by (20),
we can use a relative large searching step, since a coarse-
grained initialization is enough for the AML algorithm to
achieve satisfactory performance. For example, in the simu-
lations in Section V, we use a searching step ∆θ=∆φ= 10o

in solving (20). In this case, for a typical searching range
0o ≤ θl < 360o and 0o ≤ φl ≤ 90o, there are only 324
(36× 9) grids in the 2D searching space.
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IV. CRAMER-RAO BOUND AND ANALYSIS

This section provides explicit expression of the CRB for
joint DOA and TD estimation, based on which we give some
analysis on the advantage of joint DOA and TD estimation
over DOA-only estimation. These theoretical analyses are
new in the literature studying joint DOA and TD estimation.
Although the advantage of joint estimation over DOA-only
estimation has been empirically shown long ago, e.g., in [10],
to the best of our knowledge, the following analysis (see Result
2) is the first theoretical proof of this advantage.

A. Cramer-Rao Bound

1) CRB for joint DOA and TD estimation
Denote Θ = [θT ,φT ]T , β̃ = [βT ,βT ]T , D(k) =

S(ωk) [dk(θ1, φ1, τ1), · · · ,dk(θL, φL, τL)] with dk(θ, φ, τ) =
a(θ, φ)e−jωkτ , and

Γ1 = <
{(

ẼHP⊥
D̃

Ẽ
)
�
(
β̃∗β̃T

)}
Γ2 = <

{(
ẼHP⊥

D̃
Λ̃
)
�
(
β̃∗βT

)}
Γ3 = <

{(
Λ̃HP⊥

D̃
Λ̃
)
�
(
β∗βT

)}
where P⊥

D̃
= IMK − D̃(D̃HD̃)−1D̃H , Ẽ =

[ET (1), · · · ,ET (K)]T , Λ̃ = [ΛT (1), · · · ,ΛT (K)]T ,
and D̃ = [DT (1), · · · ,DT (K)]T with

E(k) = S(ωk)

[
∂dk(θ1, φ1, τ1)

∂θ1
, · · · , ∂dk(θL, φL, τL)

∂θL
,

∂dk(θ1, φ1, τ1)

∂φ1
, · · · , ∂dk(θL, φL, τL)

∂φL

]

Λ(k) = S(ωk)

[
∂dk(θ1, φ1, τ1)

∂τ1
, · · · , ∂dk(θL, φL, τL)

∂τL

]
.

The CRB formulae for the DOA and TD are given as follows
(derived in Appendix A).

Result 1: The 2L × 2L deterministic CRB matrix for the
azimuth and elevation DOAs is given by

CRBJ
ΘΘ =

σ2

2

(
Γ1 − Γ2Γ

−1
3 ΓT2

)−1
(21)

and the L×L deterministic CRB matrix for the TDs is given
by

CRBJ
ττ =

σ2

2

(
Γ3 − ΓT2 Γ−1

1 Γ2

)−1
. (22)

2) CRB for DOA-only estimation
Rewrite the model (4) as

x(k) = A(θ,φ)c(k) + w(k) (23)

where c(k) = [β1e
−jωkτ1S(ωk), · · · , βLe−jωkτLS(ωk)]T .

Then, treating c(k) as the unknown source signals, we can
estimate the DOA (azimuth and elevation) using a traditional
DOA-only estimator without the consideration of the TD. In
this case, the deterministic CRB for DOA-only estimation is
given by [32], [36]

CRBO
ΘΘ =

σ2

2K

[
<
{(

ΨHP⊥AΨ
)
�Rc̃

}]−1
(24)

where c̃(k) = [cT (k), cT (k)]T , P⊥A = IM − PA = IM −
A(AHA)−1A, and

Rc̃ =
1

K

K∑
k=1

c̃∗(k)c̃T (k)

Ψ =[
∂a(θ1, φ1)

∂θ1
,· · ·, ∂a(θL, φL)

∂θL
,
∂a(θ1, φ1)

∂φ1
,· · ·, ∂a(θL, φL)

∂φL

]
.

Note that, the signal models for the two CRBs (21) and (24)
are different. In the former the single source signal is known
and the multipath attenuation factors are unknown, while in the
latter all the multipath incident signals are treated as unknown
signals.

B. Analysis

Intuitively, since joint DOA and TD estimation simultane-
ously exploits the DOA and TD structure of the multipath
channels, the corresponding CRB (21) should be lower than
or at least equal to the CRB (24) for DOA-only estimation.
This is theoretically verified by the following results.

Result 2: The DOA-related block of CRB for joint DOA and
TD estimation is bounded by the associated CRB for DOA-
only estimation

CRBJ
ΘΘ ≤ CRBO

ΘΘ. (25)

Proof: See Appendix B. This result is derived for joint
azimuth, elevation and TD estimation, which can be directly
extended to the simplified case of joint azimuth and TD
estimation.

Next, we show that under some special conditions the
equality in (25) is true, i.e., CRBJ

ΘΘ = CRBO
ΘΘ.

Result 3: If all the multipath signals have the same TD, i.e.,
τ1 = · · · = τL, then, the DOA-related block of CRB for joint
DOA and TD estimation is equivalent to that for DOA-only
estimation as

CRBJ
ΘΘ = CRBO

ΘΘ

=
σ2

2
K∑
k=1

|S(ωk)|2

[
<
{(

ΨHP⊥AΨ
)
�
(
β̃∗β̃T

)}]−1

. (26)

Proof: See Appendix C.
Furthermore, in the particular case of a single path, i.e.,

L = 1, we have the following result.
Result 4: In the case of L = 1, the CRB (21) for joint

DOA and TD estimation reduces to the CRB (24) for DOA-
only estimation, and the 2 × 2 deterministic CRB matrix for
the azimuth and elevation DOAs (Θ = [θ1, φ1]T ) is given by

CRBJ
ΘΘ = CRBO

ΘΘ =
σ2

2|β1|2
K∑
k=1

|S(ωk)|2

×<


[
a′
H
θ1P

⊥
a a′θ1 a′

H
θ1P

⊥
a a′φ1

a′
H
φ1

P⊥a a′θ1 a′
H
φ1

P⊥a a′φ1

]−1


(27)

where a′θ1 = ∂aH(θ1, φ1)/∂θ1, a′φ1
= ∂aH(θ1, φ1)/∂φ1,
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and P⊥a = IM − a(θ1, φ1)aH(θ1, φ1)/‖a(θ1, φ1)‖2. Mean-
while, the deterministic CRB for τ1 is given by

CRBJ
τ1τ1

=

σ2
K∑
k=1

|S(ωk)|2

2|β1|2‖a(θ1, φ1)‖2
K∑
k=1

K∑
n=1

ωk(ωk−ωn)|S(ωk)|2|S(ωn)|2
.

(28)

The derivation of (27) and (28) is straight-
forward via using D(k) = S(ωk)dk(θ1, φ1, τ1),
E(k) = S(ωk)[∂dTk /∂θ1, ∂dTk /∂φ1]T , and
Λ(k) = −jωkS(ωk)a(θ1, φ1)e−jωkτ1 in the single path
case.

It follows from Result 3 and 4 that, in the condition that all
the incident signals have the same TD as τ1 = · · · = τL or
there exists only a single path L = 1, CRBJ

ΘΘ is independent
on the TD and CRBJ

ΘΘ = CRBO
ΘΘ holds. Moreover, in

the single path case, the CRB (28) for TD is independent
on the DOA, and it is dependent on the signal bandwidth,
sensor number, and signal power, which accords well with
the well-established results for TD estimation [33]–[35]. The
above results imply that, the expected benefit due to joint
DOA and TD estimation mainly happens in the condition that
there exist multiple reflections, i.e., L > 1, and the TDs of
the multiple reflections are well separated. In practical indoor
localization scenarios, since it is often the case that L > 1
and the line-of-sight (LOS) signal has a smaller value than
that of the multipath signals, the LOS signal can be separated
from the multipath signals in the TD space by joint DOA and
TD estimation if the signal bandwidth is wide enough. In this
sense, joint DOA and TD estimation can effectively suppress
the effect of multipath on localization accuracy.

In the following, we compare the ill-conditions of the CRB
for joint DOA and TD estimation and that for DOA-only
estimation to further shed some light on the benefit of joint
estimation.

Assumption 1: Suppose that L ≤ Lmax where Lmax is
the greatest number of the incident signals for which the
parameters θ and φ are identifiable in the sense: for any
i, j ∈ {1, · · · , L}, a(θi, φi) = a(θj , φj) if and only if θi = θj
and φi = φj .

Assumption 2: None of the elements in β is zero, i.e., the
attenuation factor of each reflection is nonzero. Further, let
d̃(θ, φ, τ) =

[
S(ω1)dT1 (θ, φ, τ), · · · , S(ωN )dTN (θ, φ, τ)

]T
,

the source signal is not a single-tone signal and for any
i, j ∈ {1, · · · , L}, d̃(θi, φi, τi) = d̃(θj , φj , τj) if and only
if θi = θj , φi = φj and τi = τj .

Assumption 1 describes an identifiability condition of the
array. Assumption 2 describes nondegenerate conditions for
the considered joint DOA and TD estimation problem. For
example, when the source signal is a single-tone signal, there is
an ambiguity problem in estimating the TDs since the equality
d̃(θi, φi, τi) = d̃(θi, φi, τj) can hold for some τi 6= τj due to
the periodicity of a single-tone signal.

Result 5: Under Assumption 1 and 2, when there exist two
or more multipath signals overlapped in both azimuth and

Fig. 1. Illustration of multipath signals separation in the azimuth, elevation
and delay (3D) space (DOA or TD overlapped reflections can be resolved in
the 3D space).

elevation, the CRB for DOA-only estimation is unbounded
(i.e., CRBO

ΘΘ = ∞), while the CRBs for joint DOA
and TD estimation are bounded (i.e. CRBJ

ΘΘ < ∞ and
CRBJ

ττ <∞) if the DOA overlapped signals have different
TDs. Further, CRBJ

ΘΘ and CRBJ
ττ are unbounded only

when there exist two or more multipath signals overlapped
simultaneously in azimuth, elevation and TD.

Proof: See Appendix D.
This result implies that, DOA overlapped signals (or signals

with DOAs too close to be resolved by traditional DOA-only
estimation) can be resolved in TD by joint DOA and TD
estimation. As will be shown in the simulations, joint DOA
and TD estimation improves the DOA estimation accuracy,
especially for small DOA separation. Meanwhile, signals with
a same TD (or with TDs too close to be resolved by TD-only
estimation) can be resolved in the azimuth and/or elevation
spaces. An illustration on this is given in Fig. 1, where the first
and second paths which have the same azimuth and elevation
can be resolved in the TD space, while the first and third paths
which have the same azimuth and TD can be resolved in the
elevation space.

Next, we show that, for joint DOA and TD estimation,
both the CRBs for DOA and TD are dependent on the signal
bandwidth.

Result 6: Let CRBJ
ΘΘ(K) and CRBJ

ττ (K) denote the
CRBs for a frequency bin (or subcarrier) number of K, then,
the CRBs (21) and (22) satisfy the following relations

CRBJ
ΘΘ(K) ≥ CRBJ

ΘΘ(K + 1)

CRBJ
ττ (K) ≥ CRBJ

ττ (K + 1).

Proof: See Appendix E.
Moreover, the following result shows that, for joint DOA

and TD estimation, both the CRBs for DOA and TD are
dependent on the sensor number. This result is derived via
straightforwardly extending Theorem 4.2 in [32] and the proof
is omitted here for succinctness.

Result 7: Let CRBJ
ΘΘ(M) and CRBJ

ττ (M) denote the
CRBs for a sensor number of M , then, the CRBs (21) and
(22) satisfy the following relations

CRBJ
ΘΘ(M) ≥ CRBJ

ΘΘ(M + 1)

CRBJ
ττ (M) ≥ CRBJ

ττ (M + 1).
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Fig. 2. RMSE of DOA and TD estimation versus SNR. Two paths with θ1 = 30◦, θ2 = 40◦, φ1 = 50◦, φ2 = 60◦, τ1 = 50 ns and τ2 = 100 ns.

Fig. 3. Typical convergence behavior of AML with SNR = 0 dB.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
AML algorithm and demonstrate the theoretical results via
simulations. We consider a typical WiFi setting according
to 802.11n, which operates in 5.32 GHz and uses 40 MHz
bandwidth with 128 subcarriers and the subcarrier frequency
spacing is 312.5 KHz. In practical 802.11n WiFi system, only
114 subcarriers are used for 40 MHz bandwidth. A uniform
circular array (UCA) of 16 omni-directional sensors with
radius r = 1.5λ is considered. The CSI at the subcarriers
are generated as (4). Mutually independent zero-mean white
Gaussian noise is added to control the signal-to-noise ratio (S-
NR). Each provided result is an average over 500 independent
runs.

In implementing the proposed AML algorithm, two cases
have been considered. In the first case, each loop in the AML
algorithm is terminated after 2 iterations, whilst in the second
case, each loop is terminated after it is converged. The DOA-
only ML estimator [31] is evaluated here for comparison,
which uses the model (23) and does not take the time delay
structure into consideration. The ML estimator in [31] is

designed for 1D DOA estimation, we directly extended it
for 2D DOA (azimuth and elevation) estimation. The MUSIC
method [29] for joint azimuth, elevation and TD estimation
is also evaluated here for comparison. The CRBs (21) and
(22) for joint DOA and TD estimation and the CRB (24) for
DOA-only estimation are plotted for comparison.

First, we consider two paths with attenuation factors β1 =
ejϕ1 and β2 = 0.9ejϕ2 , where the phase ϕ1 and ϕ2 are
randomly selected from [0, 2π]. The DOAs of the two paths
are θ1 = 30◦, θ2 = 40◦, φ1 = 50◦, φ2 = 60◦, and the time
delays of the two paths are τ1 = 50 ns and τ2 = 100 ns,
respectively. Fig. 2 shows the root mean square error (RMSE)
of DOA and TD estimation for varying SNR. It can be seen
that, the proposed AML algorithm gives significantly better
performance than the DOA-only ML algorithm. It indicates
that joint estimation has the potential to significantly improve
the DOA estimation accuracy compared with DOA-only es-
timation. While the AML algorithm achieves the CRB when
SNR ≥ −10 dB, the MUSIC method [29] cannot attain the
CRB. Fig. 3 shows the typical convergence behavior of the
proposed AML algorithm, for which only two iterations are
enough for it to achieve satisfactory performance.

Fig. 4 presents the RMSE of DOA and TD estimation for
varying azimuth separation ∆θ between the two paths. The
DOAs of the two paths are θ1 = 30◦, θ2 = θ1+∆θ, φ1 = 50◦,
φ2 = 55◦, and the time delays of the two paths are τ1 = 50
ns and τ2 = 80 ns, respectively. ∆θ is varied from 5◦ to 30◦.
The SNR is 15 dB. It can be observed that, the advantage
of joint estimation over DOA-only estimation is especially
conspicuous for small angular separation. When the multipaths
are well separated in DOA, joint estimation and DOA-only
estimation tend to give comparable performance.

Fig. 5 presents the RMSE of DOA and TD estimation
for varying TD separation ∆τ between the two paths. The
DOAs of the two paths are θ1 = 30◦, θ2 = 40◦, φ1 = 50◦,
φ2 = 60◦, and the time delays of the two paths are τ1 = 50
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Fig. 4. RMSE of DOA and TD estimation versus azimuth separation ∆θ. Two paths with θ1 = 30◦, θ2 = θ1 + ∆θ, φ1 = 50◦, φ2 = 55◦, τ1 = 50 ns
and τ2 = 80 ns.

Fig. 5. RMSE of DOA and TD estimation versus TD separation ∆τ . SNR = 15 dB, two paths with θ1 = 30◦, θ2 = 40◦, φ1 = 50◦, φ2 = 60◦, τ1 = 50
ns and τ2 = τ1 + ∆τ ns.

ns, τ2 = τ1 + ∆τ ns, respectively. ∆τ is varied from 5 ns to
50 ns. The SNR is 15 dB. The results in Fig. 5 indicate that,
the difference between the CRBs of joint estimation and DOA-
only estimation decreases as the TD separation decreases. The
advantage of joint estimation over DOA-only estimation is
prominent for relatively large TD separation.

The next experiment evaluates the performance dependence
on the number of subcarriers. The number of subcarriers K
is varied from 16 to 128, and the corresponding bandwidth is
varied from 5 MHz to 40 MHz. The DOA and TD parameters
of the two paths are set as same as that in Fig. 2. Fig. 6
shows the RMSE of DOA and TD estimation for varying K
with SNR = 15 dB. It can be observed that, the accuracy of

each compared method improves as the number of subcarriers
increases, which is especially conspicuous for time delay
estimation. Furthermore, the advantage of joint estimation over
DOA-only estimation gets more prominent as the number of
subcarriers increases.

In the last experiment, we consider the single path case,
i.e., L = 1, with θ1 = 30◦, φ1 = 50◦, and τ1 = 50 ns. It
can be seen from Fig. 7 that, joint estimation and DOA-only
estimation give almost the same performance in the single path
case. The results in Fig. 5 and Fig. 7 accord well with the
theoretical results in Section IV that, the benefit due to joint
DOA and TD estimation over DOA-only estimation mainly
happens in the condition that there exist multiple reflections,
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Fig. 6. RMSE of DOA and TD estimation versus subcarrier number K. SNR = 15 dB, two paths with, θ1 = 30◦, θ2 = 40◦, φ1 = 50◦, φ2 = 60◦,
τ1 = 50 ns and τ2 = 100 ns.

Fig. 7. RMSE of DOA and TD estimation versus SNR. A single path with θ1 = 30◦, φ1 = 50◦, τ1 = 50 ns.

i.e., L > 1, and the time delays of the multiple reflections are
well separated.

VI. CONCLUSION

In this work, we proposed an AML algorithm for joint az-
imuth, elevation angles and TD estimation, which can be used
for 3D indoor localization in wireless communication systems.
More importantly, we analytically proved the advantage of
joint DOA and TD estimation over DOA-only estimation,
which is the first theoretical proof of such advantage in the
literature studying joint DOA and TD estimation, although
it has been empirically demonstrated long ago. The results
indicate that, the benefit due to joint estimation over DOA-only
estimation arises when there exist multiple reflections and the
time delays of the multiple reflections are well separated. This
benefit is especially conspicuous for small angular separation.

As shown in Result 5, joint estimation has the potential to
resolve DOA-overlapped multipath signals in the TD space
if the DOA-overlapped signals are well separated in TD.
However, as shown in the simulation results, the proposed
AML algorithm cannot resolve DOA-overlapped signals since
the estimation (16) would break down in this condition. A
future work is to develop efficient methods applicable to such

condition. Moreover, this work focuses on the joint DOA and
TD estimation problem and have not addressed the NLOS
problem, which is an essential factor should be considered
in indoor localization. We are carrying out another study
specially addressing the NLOS problem in indoor localization
based on spectrum fusion of multiple arrays.

APPENDIX A
DERIVATION OF THE CRB IN RESULT 1

From the signal model (4) and under the assumption that the
noise spectrum vector w(k) is zero-mean circularly complex
white Gaussian distributed with variance σ2 in each element,
the Fisher information matrix (FIM) can be expressed as

FJ =
2

σ2
<
{
∂bH

∂Φ

∂b

∂ΦT

}
=

FΘΘ FΘτ FΘβ

FτΘ Fττ Fτβ

FβΘ Fβτ Fββ

 (29)

where Φ = [ΘT , τT ,βTR,β
T
I ]T ∈ 5L×1 with Θ = [θT ,φT ]T ,

βR = <{β}, βI = ={β} and

b = [DT (1), · · · ,DT (K)]Tβ.
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After some manipulations we have

∂bH

∂Θ
= diag

{
[βH ,βH ]

} [
EH(1), · · · ,EH(K)

]
∂bH

∂τ
= diag(β∗)

[
ΛH(1), · · · ,ΛH(K)

]
∂bH

∂βR
=
[
DH(1), · · · ,DH(K)

]
∂bH

∂βI
= −j

[
DH(1), · · · ,DH(K)

]
.

Then, we can derive the submatrices of the FIM (29) as follows

FΘΘ =
2

σ2
<

{
diag(β̃∗)

[
K∑
k=1

EH(k)E(k)

]
diag(β̃)

}
(30)

Fττ =
2

σ2
<

{
diag(β∗)

[
K∑
k=1

ΛH(k)Λ(k)

]
diag(β)

}

FΘτ =
2

σ2
<

{
diag(β̃∗)

[
K∑
k=1

EH(k)Λ(k)

]
diag(β)

}

FΘβR
=

2

σ2
<

{
diag(β̃∗)

K∑
k=1

EH(k)D(k)

}

FΘβI
= − 2

σ2
=

{
diag(β̃∗)

K∑
k=1

EH(k)D(k)

}

FβRβR
=

2

σ2
<

{
K∑
k=1

DH(k)D(k)

}

FβIβI
=

2

σ2
<

{
K∑
k=1

DH (k) D (k)

}

FβRβI
= − 2

σ2
=

{
K∑
k=1

DH(k)D(k)

}

FτβR
=

2

σ2
<

{
diag(β∗)

K∑
k=1

ΛH(k)D(k)

}

FτβI
= − 2

σ2
=

{
diag(β∗)

K∑
k=1

ΛH(k)D(k)

}
.

The remain submatrices of the FIM are given by

FΘβ = FTβΘ = [FΘβR
,FΘβI

]

Fτβ = FTβτ = [FτβR
,FτβI

]

and

Fββ =

[
FβRβR

FβRβI

FβRβI
FβIβI

]
(31)

with FβIβR
= FTβRβI

.

Using the partitioned matrix inversion lemma, the inverse
of the CRB matrix for Θ can be obtained as

(CRBJ
ΘΘ)−1 = FΘΘ − FΘβF−1

ββFTΘβ

−
(
FΘτ − FΘβF−1

ββFTτβ

)(
Fττ − FτβF−1

ββFTτβ

)−1

×
(
FτΘ − FτβF−1

ββFTΘβ

)
.

(32)

Then, using the following rules [28][
<{H} −={H}
={H} <{H}

]−1

=

[
<{H−1} −={H−1}
={H−1} <{H−1}

]
and

={X}<{YH}+ <{X}={YH} = ={XYH}
<{X}<{YH} − ={X}={YH} = <{XYH}

the formulae in (21) is derived after straightforward manipu-
lation. In a similar manner, the inverse of the CRB matrix for
τ is given by

(CRBJ
ττ )−1 = Fττ − FτβF−1

ββFTτβ

−
(
FτΘ − FτβF−1

ββFTΘβ

)(
FΘΘ − FΘβF−1

ββFTΘβ

)−1

×
(
FΘτ − FΘβF−1

ββFTτβ

)
and we can obtain an explicit expression as (22).

APPENDIX B
PROOF OF RESULT 2

First, for the DOA-only estimation case, the FIM is given
by

FO =

[
FΘΘ FΘC

FCΘ FCC

]
(33)

where FΘΘ is given by (30), FΘC = [FΘc(1), · · · ,FΘc(K)]
and FCΘ = FTΘC with FΘc(k) = [FΘcR(k),FΘcI(k)],
cR(k) = <{c(k)}, cI(k) = ={c(k)} and

FΘc(k) =
2

σ2
<
{

diag{c̃∗(k)}ΨH [A(θ, ϕ), jA(θ, ϕ)]
}

FCC = blkdiag
{
Fc(1)c(1), · · · ,Fc(K)c(K)

}
with

Fc(k)c(k) =

[
FcR(k)cR(k) FcR(k)cI(k)

FcI(k)cR(k) FcI(k)cI(k)

]
=

2

σ2

[
<{AHA} −={AHA}
={AHA} <{AHA}

]
.

The CRB for the DOA-only estimation can be rewritten as

(CRBO
ΘΘ)−1 = FΘΘ − FΘCF−1

CCFTΘC. (34)

From (32) and (34), to prove CRBJ
ΘΘ ≤ CRBO

ΘΘ, it is
enough to prove that

FΘCF−1
CCFCΘ − FΘβF−1

ββFβΘ

−
(
FΘτ − FΘβF−1

ββFβτ

)(
Fττ − FτβF−1

ββFβτ

)−1

×
(
FτΘ − FτβF−1

ββFβΘ

)
≥ 0.

(35)

Using the standard technique of Schur complements, (35) in
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fact is equivalent to

M0 =

FΘCF−1
CCFCΘ FΘτ FΘβ

FτΘ Fττ Fτβ

FβΘ Fβτ Fββ

 ≥ 0. (36)

In fact, it follows from the partitioned matrix inversion lemma
that, the first 2L × 2L block of the inverse matrix M−1

0 is
equivalent to the inverse of the left term in (35). Let t(k) =
[e−jωkτ1 , · · · , e−jωkτL ]T , t̃(k) = [tT (k), tT (k)]T , and

B1 =
K∑
k=1

|S(ωk)|2t∗(k)tT (k)

B2 =
K∑
k=1

ωk|S(ωk)|2t∗(k)tT (k)

B3 =
K∑
k=1

ω2
k|S(ωk)|2t∗(k)tT (k)

and using the following relations

EH(k)Λ(k) = −j(ΨHA)�
[
ωk|S(ωk)|2t̃

∗
(k)tT (k)

]
EH(k)D(k) = (ΨHA)�

[
|S(ωk)|2t̃∗(k)tT (k)

]
ΛH(k)Λ(k) = (AHA)�

[
ω2
k|S(ωk)|2t∗(k)t(k)

]
DH(k)D(k) = (AHA)�

[
|S(ωk)|2t∗(k)tT (k)

]
ΛH(k)D(k) = j(AHA)�

[
ωk|S(ωk)|2t∗(k)tT (k)

]
we have

FΘCF−1
CCFCΘ

=
2

σ2
<
{

(ΨHPAΨ)�
[
B1 B1

B1 B1

]
�
(
β̃∗β̃T

)}
FΘτ =

2

σ2
<
{
−j(ΨHA)�

[
B2

B2

]
� (β̃∗βT )

}
FΘβR

=
2

σ2
<
{

(ΨHA)�
[
B1

B1

]
� (β̃∗1TL)

}
FΘβI

=
2

σ2
<
{
j(ΨHA)�

[
B1

B1

]
� (β̃∗1TL)

}
Fττ =

2

σ2
<
{

(AHA)�B3 � (β∗βT )
}

FβRβR
=

2

σ2
<
{

(AHA)�B1

}

FβIβI
=

2

σ2
<

{
K∑
k=1

(AHA)�B1

}
FβRβI

=
2

σ2
<
{
j(AHA)�B1

}
FτβR

=
2

σ2
<
{
j(AHA)�B2 � (β∗1TL)

}
FτβI

=
2

σ2
<
{
−(AHA)�B2 � (β∗1TL)

}
.

Substituting these terms into (36), and with the use of FΘβ =
FTβΘ = [FΘβR

,FΘβI
], Fτβ = FTβτ = [FτβR

,FτβI
] and

(31), we can express the matrix M0 in (36) as

M0 =
2

σ2
<{M1 �M2 �M3} (37)

where

M1 =


ΨHPAΨ −jΨHA ΨHA jΨHA
jAHΨ AHA jAHA −AHA
AHΨ −jAHA AHA jAHA
−jAHΨ −AHA −jAHA AHA



M2 =

 B̃1 B̃2 B̃1

B̃H
2 B3 B̃H

2

B̃1 B̃2 B̃1



M3 =

 β̃∗β̃T β̃∗βT β̃∗1T2L
β∗β̃T β∗βT β∗1T2L
12Lβ̃

T 12Lβ
T 12L1T2L


with

B̃1 =

[
B1 B1

B1 B1

]
, B̃2 =

[
B2

B2

]
.

Then, using the fact that <{M} ≥ 0 if M ≥ 0, M0 is positive
semidefinite if

M1 �M2 �M3 ≥ 0. (38)

From the properties of Hadamard product, (38) holds if all of
M1, M2 and M3 are positive semidefinite. Since these three
matrices can be expressed as

M1 =


ΨH

jAH

AH

−jAH

A(AHA)−1AH [Ψ − jA A jA]

M2 =
K∑
k=1

|S(ωk)|2
 t̃∗(k)
ωkt
∗(k)

t̃∗(k)

 [t̃T (k) ωkt
T (k) t̃T (k)

]
and

M3 =

 β̃∗

β∗

12L

[β̃T βT 1T2L

]
it is easy to see that all of M1, M1 and M3 are positive
semidefinite. Thus, (35), (36) and (38) are satisfied, which
completes the proof.

APPENDIX C
PROOF OF RESULT 3

When τ1 = · · · = τL, it follows that

D(k) = S(ωk)e−jωkτ1A(θ,φ)

E(k) = S(ωk)e−jωkτ1Ψ

Λ(k) = −jωkS(ωk)e−jωkτ1A(θ,φ)

c(k) = S(ωk)e−jωkτ1 [β1, · · · , βL]T

based on which we further have c̃(k) = S(ωk)e−jωkτ1 β̃,
ẼHP⊥

D̃
Λ̃=0, and ẼHP⊥

D̃
Ẽ=

∑K
k=1 |S(ωk)|2ΨHP⊥AΨ,

which together with (21) and (24) finally results in (26).
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APPENDIX D
PROOF OF RESULT 5

For the DOA-only estimation case, the FIM is given by
(33). When there are P ≥ 2 incident signals overlapped
in both azimuth and elevation, that is there exists a subset
S ⊂ {1, · · · , L} with size P ≥ 2 such that θi = θj and
φi = φj for any i, j ∈ S, it follows that a(θi, φi) = a(θj , φj),
∂a(θi, φi)/∂θi = ∂a(θj , φj)/∂θj and ∂a(θi, φi)/∂φi =
∂a(θj , φj)/∂φj for any i, j ∈ S. In this case, FΘΘ and
FCC are not full-rank as rank(FΘΘ) ≤ 2(L − P + 1) and
rank(FCC) ≤ 2K(L−P + 1). Meanwhile, the row blocks in
the FIM[

Fc(k)Θ, · · · ,0, · · · ,Fc(k)c(k), · · ·0, · · ·
]
∈ C2L×2(K+1)L

for k = 1, · · · ,K, are not full-row rank. Thus, CRBO
ΘΘ is

unbounded in this case.
For the joint DOA and TD estimation case, let Θ̄ =

[θT ,φT , τT ]T , the FIM (29) can be rewritten as

FJ =

[
FΘ̄Θ̄ FΘ̄β

FβΘ̄ Fββ

]
.

When there exists a subset S ⊂ {1, · · · , L} with size P ≥ 2
such that θi = θj , φi = φj and τi = τj for any i, j ∈ S, it
follows that d̃(θi, φi, τi) = d̃(θj , φj , τj) for any i, j ∈ S. In
this case, in a similar manner to the above discussion, it is easy
to see the FIM is not full-rank and therefore CRBJ

ΘΘ and
CRBJ

ττ are unbounded. In the case that the DOA overlapped
signals have different TDs, i.e., θi = θj , φi = φj and τi 6= τj
for any i, j ∈ S, we have d̃(θi, φi, τi) 6= d̃(θj , φj , τj) under
Assumption 1 and 2. Then, from the decomposed expressions
of the FIM in Appendix A, it is easy to see that the FIM has a
full rank and CRBJ

ΘΘ and CRBJ
ττ are bounded in this case.

In other cases where there do not exist two or more multipath
signals overlapped simultaneously in azimuth, elevation and
TD, it also follows that d̃(θi, φi, τi) 6= d̃(θj , φj , τj) for any
i, j ∈ {1, · · · , L} and, thus, CRBJ

ΘΘ and CRBJ
ττ are

bounded following similar arguments.

APPENDIX E
PROOF OF RESULT 6

Let FJ(K) denote the FIM (29) for a frequency bin
(or subcarrier) number of K, to show CRBJ

ΘΘ(K) ≥
CRBJ

ΘΘ(K + 1) and CRBJ
ττ (K) ≥ CRBJ

ττ (K + 1), it
is enough to show that

FJ(K + 1) ≥ FJ(K). (39)

Denote

B1(K) =
K∑
k=1

|S(ωk)|2t∗(k)tT (k)

B2(K) =
K∑
k=1

ωk|S(ωk)|2t∗(k)tT (k)

B3(K) =
K∑
k=1

ω2
k|S(ωk)|2t∗(k)tT (k)

and

B̃1(K) =

[
B1(K) B1(K)
B1(K) B1(K)

]
, B̃2(K) =

[
B2(K)
B2(K)

]
.

First, similar to (37), the FIM FJ(K) can be expressed as

FJ(K) =
2

σ2
<{M3 �M4 �M5(K)}

where M3 is given by (37) and

M4 =


ΨHΨ −jΨHA ΨHA jΨHA
jAHΨ AHA jAHA −AHA
AHΨ −jAHA AHA jAHA
−jAHΨ −AHA −jAHA AHA



M5(K) =

 B̃1(K) B̃2(K) B̃1(K)

B̃H
2 (K) B3(K) B̃H

2 (K)

B̃1(K) B̃2(K) B̃1(K)

 .
Then, to show (39), it is enough to show

FJ(K+1)− FJ(K)

=
2

σ2
<{M3 �M4 � [M5(K + 1)−M5(K)]}

≥ 0

(40)

Using the fact that <{M} ≥ 0 if M ≥ 0, it follows that (40)
holds if

M3 �M4 � [M5(K + 1)−M5(K)] ≥ 0. (41)

Since M3 ≥ 0 (see Appendix B) and

M4 =


ΨH

jAH

AH

−jAH

 [Ψ − jA A jA]

is also positive semidefinite, it follows from the properties of
Hadamard product that (41) holds if M5(K+ 1)−M5(K) ≥
0. Further, since

M5(K + 1)−M5(K) = |S(ωK+1)|2

×

 t̃∗(K + 1)
ωkt
∗(K + 1)

t̃∗(K + 1)

 [t̃T (K + 1) ωkt
T (K + 1) t̃T (K + 1)

]
is positive semidefinite, the assertion (41) and further (39) are
proved, which completes the proof.
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