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Abstract—This paper proposes a hardware accelerator of
Oriented FAST and Rotated BRIEF (ORB) algorithm with its full
implementation. The accelerator is optimized in computational
logics and memory organizations to achieve real-time perfor-
mance and good matching accuracy. The architecture consists
of a loose-coupled pipeline, in which keypoints are detected
in scale-level parallel while descriptors are built in task-level
parallel. In this way, the workload in different pipeline stages
are balanced. Because of the loose-coupled architecture employed,
large amounts of image pyramid data are offloaded to external
memory and fetched again. To relieve the external memory
bandwidth requirement, image pyramid data are stored every
other scale and a shared data-reuse structure is also introduced
for patch loading. Besides, we design a score recorder to refine
the keypoints in different regions adaptively. As a result, the
relatively balanced distribution of keypoints in a frame is in favor
of establishing keypoint correspondences. The proposed archi-
tecture is implemented on a Zynq-family FPGA with 100MHz
and can extract 1000 features in full-HD images at 42fps. An
external memory bandwidth of 1.96Gbps and internal memory
of 583.4Kbits are suitable for practical embedded applications.
Keywords—feature extraction; hardware accelerator; ORB

I. INTRODUCTION

Image feature extraction is a fundamental task in the field of

computer vision. Recently, high-level features learned by deep

neural network have gained great success in object recognition

and detection. Still, handcrafted features are widely used in a

variety of applications such as 3D reconstruction, visual odom-

etry and simultaneous localization and mapping (SLAM),

where feature correspondences are built in image sequences

to generate a map. Scale-Invariant Feature Transform (SIFT)

[1] is one of most prominent low-level features invariant to

scale, rotation, noise and illumination. Likewise, Speeded-UP

Robust Feature (SURF) [2] is proposed with lower compu-

tational complexity and keeps almost the same performance

compared with SIFT. Both of them detect repeatable keypoints

in scale space and generate descriptors based on Histogram of

Gradients (HoG).

Despite high-quality features obtained by SIFT/SURF, it

is difficult to implement them in real-time due to intensive

computation and memory access. To address the problem, re-

searchers have presented binary descriptors. Binary descriptors

compare the intensity of pixel pairs with certain distribution

in a local image patch, which cost less memory space and can

be efficiently matched using XOR operations. A combination

of Features from Accelerated Segment Test (FAST) [3] and

Binary Robust Independent Elementary Features (BRIEF) [4]

is widely used for keypoint detection and feature description

respectively since it achieves comparable performance with

SIFT. This solution is further refined as Oriented FAST and

Rotated BRIEF (ORB) [5] to achieve scale and rotation

invariance. ORB algorithm has been successfully applied in

sparse visual SLAM system [6].

To develop vision applications on embedded platforms such

as IoT devices, unmanned aerial vehicles and smart robots,

many researchers have explored different architectures to per-

form binary feature extraction in real-time [7] [8] [9] [10]. In

[7], an image recognition accelerator has been proposed, which

shares a unified data path to perform FAST and BRIEF algo-

rithms, but the time of pixel loading is not taken into account.

In [8] [10], full-pipelined FAST and BRIEF architectures have

been implemented on FPGA, yet they do not address scale and

rotation invariance. To the best knowledge of us, the work in

[9] is the first hardware solution based on ORB method. For

ORB algorithm, both oFAST keypoint detection and rBrief

descriptor generation access large amount of image data from

multiple scales. However, the option that multi-scale images

are stored on chip results in much resource overhead and also

limits the scalability.

This paper presents a hardware architecture that efficiently

implements real-time ORB feature extraction. Compared with

previous works realized on FPGA, our contributions are:

• A loose-coupled architecture is proposed to balance the

workload. It detects keypoints on multiple scales in

parallel and computes a descriptor for each keypoint one

by one.

• A score recorder is integrated with non-max suppression

to filter low-quality keypoints and adaptively control the

keypoint distribution over an image.

• Smoothed images of every other scale are stored to

external memory, which reduces massive internal memory

size and the access size of external memory as well.

• A shared data-reuse structure for both orientation esti-

mation and descriptor generation is designed to further

decrease the memory bandwidth requirement.

The rest of this paper is organized as follows: Section II

reviews the ORB algorithm and introduces several hardware-
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Fig. 1. The ORB algorithm flow and its optimization.

oriented optimizations. Section III presents the architecture

details of the proposed accelerator. Implementation on FPGA

and simulation experiments are demonstrated in Section IV.

Section V gives a summary of our design and discuss the

future work.

II. REVIEW OF ORB ALGORITHM

The ORB algorithm flow is shown in Fig.1a. It first detects

FAST corners in multiple scales of the source image. Then

non-max suppression (NMS) is performed to filter low-quality

corners. After that the orientation of each keypoint is estimated

by Intensity Centroid (IC) method. Finally descriptors are

generated using BRIEF rotated by orientations. With some

modification and reorder of the pipeline, the algorithm flow is

optimized to improve processing speed and reduce hardware

overhead, as shown in Fig.1b. Each step and its optimization

is briefly described in the following.

A. Keypoint Detection

The FAST detection [3] operates on a 16-pixel Bresenham

circle around the candidate pixel P with intensity of Ip. If
there exists n contiguous pixels on the circle brighter than

Ip plus a threshold t or darker than Ip − t, then the center
pixel P will be classified as a corner, as illustrated in Fig.2.

The original FAST detector build a decision tree by ID3

algorithm to classify pixels. However, we still perform FAST

detection by its definition because it is efficient to implement

in hardware and cost less memory. As suggested in [5], a

scale built by downsampling the source image is also used to

produce mulit-scale features. Besides, the optimal value of n
is set to 9, which produces best repeatability.

B. Non-max Suppression

In [5], all pixels passed FAST the segment test are or-

dered by their Harris corner response and those with lower

response are filtered. However, Harris response requires plenty

of gradient and multiplication operations when computing the

auto-correlation function of a local image patch. Instead, we

define the score as the sum of the absolute difference (SAD)

between the corner’s intensity and the intensity of pixels on the

continuous bright or dark arc. Only if the score of a candidate
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Fig. 2. The simplified computing patterns.

corner is higher than that of its 8-connected neighbors, or in

the 3×3 window, it will be denoted as a keypoint.
C. Orientation Estimation

The orientation of a keypoint is estimated by the intensity

centroid in a local patch. The horizontal component mx and

vertical component my of intensity centroid can be computed

through sum of intensity I(x, y) weighted by coordinate (x, y),
where the origin locates at the keypoint:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
mx =

r∑
x=−r

xI(x, y)

my =
r∑

y=−r

yI(x, y)

(1)

where r is radius of the local patch, set to 15 by default. Then
the orientation θ of the patch is defined by:

θ = arctan(
my

mx
) (2)

where arctan is quadrant-aware. In our hardware implementa-
tion, the latency of orientation estimation will be hidden when

loading image patch before descriptor generation.

D. Descriptor Generation

Since BRIEF descriptor is sensitive to noise, the image

patch p used for pixel sampling should be smoothed first. Here
we use a 5×5 binominal coefficient filter to approximate a
Gaussian filter, in which convolution can be simply replaced

by shift and addition operations. Then the descriptor is ex-

pressed as a 256 bit vector. Each bit of the vector is the result

of a comparison τ(p;x, y) between the intensity of two pixels
p(x) p(y) sampled from the patch centered at the keypoint:

τ(p;x, y) =

{
1 p(x) < p(y)

0 p(x) ≥ p(y)
(3)

ORB algorithm utilizes a learning method to select those

pixel pairs with high variance and low correlation to achieve

better performance. To improve orientation invariance, the

coordinates of learned pixel pairs need to be rotated by the

orientation of the keypoint before the binary test.

III. THE ORB ACCELERATOR

This section presents the architecture of the proposed ORB-

based accelerator. The accelerator consists of six function units

to implement the most features of ORB algorithm: image

downsampling, image smoothing, keypoint detection, non-max
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Fig. 3. The ORB accelerator architecture

suppression, orientation estimation and descriptor generation.

The details of each function unit and several hardware-oriented

optimizations are described in the following.

A. Overall Hardware Architucture

The overall architecture is shown in Fig. 3. Through a

streaming interface, the gray-scale image is first written into

a buffer. The buffer is composed of seven FIFOs connected

end to end. Each FIFO has a depth of image width W (W
is 1920 in the implementation) to store a row of pixels. A

7 × 7 2D register file is connected with the output ports of

the buffer. Data in the previous FIFO are read and written to

the next FIFO and the register file simultaneously on every

clock cycle. Such memory organization can be regarded as

a sliding window moving over the entire frame. The register

file provides the ability to access 7 × 7 pixels within a local
region, which is particularly advantageous for typical image

processing algorithms.

Following the register file, function units including image

smoothing, image downsampling and keypoint detection fetch

data from the register file concurrently with respective patterns.

These modules(the part in the dotted line in Fig.3) are dupli-

cated to process in 4 scales in parallel. Source images except

the fourth scale are downsampled by bilinear interpolation, and

the result serves as the source of the higher scale. Moreover,

the source images in the first and the third scale are also

smoothed by convolution with binominal kernals and offloaded

to external memory. The keypoint detection module not only

extracts keypoint candidates but also computes their scores.

Then the keypoint candidates are filtered by NMS, and written

into the keypoint buffer. Based on a keypoint’s position in

a frame, the patch loader fetches a patch of data from the

external memory and writes them to the reuse buffer and the

patch buffer. Both of them provide data for the orientation

estimation and the descriptor generation. The patch loader and

the reuse buffer cooperate to realize the data reuse scheme.

B. String-based FAST-9 Detection

Previous works in [7] [9] implement FAST corner detection

based on optimized string searching algorithms with early

rejections. Inspired by these methods, we also generate binary

strings to perform corner detection. Two identical test units

(TU) without searching and early rejection, shown in Fig.4a,

are used to judge whether a pixel is a dark or bright corner re-

spectively. Take dark test as an example, it contains 16 parallel

comparators. If the intensity of one pixel in Breshenman circle

is less than that of the center pixel by a threshold, then the

comparator outputs “1”, otherwise “0”. The result of these 16

comparators form a dark string0, indicating the state of this 16
circle pixels. For the dark string0, 9 continuous bits are tested
by AND operation. This procedure is duplicated from the MSB

and turned back when met with the LSB. The output of 16

AND operations again form a 16-bit dark string1. If there
exists at least one “1” in dark string1, it means the center
pixel passes the dark test and the dark flag is set to “1”. In
the meanwhile, the dark string1 is left and right circle shifted
by 1 to 4 bits. These nine strings are fused by OR operation to

generate a dark mask used for score computation. Similarly,
the bright test unit produces a bright flag and a bright mask.
The final corner flag and mask are defined as the OR by bit of
the results from the two TUs. As a result, if the corner flag
is “1”, meaning the center pixel is a corner, the mask will
include at least 9 continous “1” bits with the rest of “0”, and

the “1” bits represent those dark or bright circle pixels.

On the other hand, A score unit (SU) as seen in Fig.4b is

also used to compute the score of the pixel based on result

of the two TUs. The absolute values of difference between

the circle pixels’ intenstiy and the intensity of the center pixel

constitute a diff array. The 16 elements in the diff array are
then filtered by the mask to reserve those pixels on the dark or
bright arc, denoted as filtered diff. Instead of multiplication,
the filtered diff is calculated by the AND operations between
the diff array and the mask. Then an adder tree is employed to
sum the differences of intensity to obtain the final score of the
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Fig. 4. The architecture of string-based FAST-9 detection

pixel. Finally, for each pixel under test, the FAST detection

module outputs a corner flag and its score.

C. Resource Optimization in Downsampling and Smoothing

To detect keypoints in multiple scales, an image pyramid is

built by donwsampling on lower levels. Moreover, images of

each scale are smoothed to improve the robustness to noise of

descriptors. Both of the downsampling and smoothing process

operate in a 5×5 window. For the convenience of description,
the ID number of each pixel in the window is shown in

Fig.5a. For the pixel located at the center of the window, the

smoothed result is calculated by convolving all pixels with the

binominal kernels as in Fig.5b. To reduce the hardware cost,

the convolution can be converted to add and shift operations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t0 =
∑
In n ∈ {0, 4, 20, 24}

t1 = (
∑
In)<<2 n ∈ {1, 3, 5, 9, 15,

19, 21, 23}
t2 = ((

∑
In)<<2) +

∑
In n ∈ {2, 10, 14, 22}

t3 = (
∑
In)<<4 n ∈ {6, 8, 16, 18}

t4 = ((
∑
In)<<4) + ((

∑
In)<<3) n ∈ {7, 11, 13, 17}

t5 = ((
∑
In)<<5) + ((

∑
In)<<2) n = 12

Is = (
5∑

m=0
tm)>>8

(4)

where t0 to t5 are intermediate values, In is the intensity of
pixels with ID number n and Is is the intensity of center pixel
after smoothing.

The downsampling with a scale factor of 1.25 is calculated

by bilinear interpolation. Therefore, every five pixels will

generate four downsampled pixels. As seen in Fig.6, among

the five pixels two adjacent source pixels weighted by kernels

are added to produce a downsampled pixel. This process is

also realized by adders and shifters:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Id0 = I0

Id1 = ((I1<<1) + I1 + I2)>> 2

Id2 = ((I2<<1) + (I3<<1))>>2

Id3 = (I3 + (I4<<1) + I4))>>2

(5)

where I0 to I4 and Id0 to Id3 intensity of source pixels and
downsampled pixels respectively. The results of horizontal

downsampling are then taken as input to vertical downsam-

pling to compute the final downsampled image.
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(a) ID number of pixels
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(b) Binominal kernels

Fig. 5. The templetes for image smoothing

D. 3×3 NMS with Score Recorder
We design a four-stage keypoint filter to perform NMS as

seen in Fig.7. After the FAST test, all pixels are sent to the

NMS module in row-wise. These pixels are labeled with a flag

indicating whether they are corners or not. The data processing

flow of our proposed method is described as follows. First, M0

checks the flag and compares the score of the pixel in register

B4 with its left neighbor pixel in register B3. Only if B4 and

B3 are both corners and the score of B4 is lower than B3, will

M0 set B4 to non-corner and output it to register B3. In the

next cycle, the pixel in B3, which has been tested by M0, is

compared with its right neighor in B4 by M1 in the same way.

As a result, M1 outputs the suppressed result of B3. Then M2

tests whether the pixel in B1 is a keypoint by checking its flag

and comparing its score with three nearest pixels A0 to A2 in

the previous row. The result of B1 is written into a candidate

buffer, and the buffer is read synchronously to keep the pixels

in B2 and A2 are always vertically adjacent. At last, M3 tests

A1 with three nearest pixels below and outputs the final 3×3
NMS result. In general, M0 and M1 together perform NMS

on the center pixel with its two left and right neighbors in the

same row, while M2 and M3 perform NMS on the pixel with

its six top and bottom neighbors.

When stored to the local keypoint buffer, the pixel after

NMS is recorded in a table according to its score as seen in

Fig.8. The record table has 8 entries with two fields per each.

The high-bit regions are initialized with pre-computed score

steps (S0 to S7) ranging from the t × 9 to the max, where t
is the FAST threshold. The low-bit regions are counters used

to record the number (N0 to N7) of keypoints higher than

the corresponding scores. For example, if a corner with score

higher than S2 but lower than S3, then counters for S0, S1

and S2 will all get increased by 1. A number threshold tn
and a pointer ptr are also attached to the score table. In the
beginning, ptr points to S0 (or N0). When N0≥ tn, ptr moves
to S1 and this process is the same for S1 to S7. In practice, we

I0 I1 I2 I3 I4

Id0 Id0 Id0 Id0

1 3/4 1/4 1/21/2 3/41/4

Fig. 6. The templetes for image smoothing
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Fig. 7. The architecture of 3× 3 NMS

divide a row into 8 segments and utilize two tables to record

these segments in turn. When a table completes recording

pixels of current segment, the final local score threshold ts
is determined:

ts =

{
S[ptr] N [ptr] > tn/2

(S[ptr] + S[ptr − 1])/2 N [ptr] ≤ tn/2
(6)

Then corners fetched from the local keypoint buffer are then

further refined, meaning that only those with score higher than

ts are retained and written into the global keypoint buffer. The
global keypoint buffer contains four FIFOs for one scale per

each.

E. Data Reuse in Patch Loading

Both orientation estimation and descriptors generation op-

erate on a local image patch. Since keypoints are detected in

row-wise, local patches required by two consecutive keypoints

in the same row of a scale may be overlapped. Fig.9 shows

an example of patch overlap, in which the distance d between
the previous keypoint kp0 and the current one kp, is less than
the patch width 2r+ 1. As a result, part of the local patch of
kp0, labeled by R can be reused for kp when computing its
orientation and descriptor, and the rest part F with a size of

d×(2r+1) (2r+1 is the patch height) will be fetched from the
external memory. Therefore, the amount of external memory

access can be reduced by the amount of data in overlapped

region R.
The architecture of the patch loader is shown in Fig.10. As

the smoothed images of the first and third scale are stored in

external memory, patch loading are completed in Four steps.

First, the boundary of the required local patch is calculated

based on the keypoint coordinates, and compared with the

previous boundary to compute the overlap and non-overlap

region. After that, if the keypoint is located in the second

Local keypoint buffer

Score
test 0

Score
test 1

Input

ptr

Output

ptr

S7 N7(0)
S6 N6(0)
S5 N5(0)
S4 N4(1)
S3 N3(1)
S2 N2(3)
S1 N1(11)
S0 N0(17)

Fig. 8. The architecture of score recorder
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Fig. 9. Patch overlap

or fourth scale, the non-overlap region needs to be mapped

on the lower scale by multiplication with the scale factor.

Then the patch data are fetched from either the reuse buffer

or the external memory. If the non-overlap region has been

scaled, the data from external memory are downsampled to

change the input patch to higher scale. At last, data from the

external memory, the downsample module or the reuse buffer

are written in to reuse buffer for next keypoint and transmitted

to orientation estimation and the patch buffer as well.

F. Acceleration of Orientation and Descriptor Computation

In ORB algorithm, the intensity centroid of a keypoint is

calculated in the region centered at the keypoint with a radius

of r (r = 15 by default) to estimate its orientation. This time-
consuming procedure involves large amount of multiplication

and add operations, as well as triangle function operations.

However, when writing data into the patch buffer prepared for

descriptor generation, the output data from the patch loader

can also be used to compute the orientation. Thus, the time cost

on orientation estimation is hidden behind during patch load-

ing. Fig.11 shows the architecture of orientation estimation.

The coordinate unit generates the x and y components of the
input pixel’s coordinate. Two identical MAC units computes

the x and y components of intensity centroid in parallel. After
traversing all pixels in the circular region with a radius of

15, the cordic unit calculates tangent value of the orientation

angle in 20 cycles. Then the tangent value is converted to an

ID number as the final orientation by searching the LUT. In

our configuration, the 2D coordinate system is split into 32

different orientations.

When orientation estimation is done, the same image patch

is stored in both reuse buffer and patch buffer. Therefore,

the time cost on descriptor generation is reduced by half by

accessing the two buffers concurrently. As shown in Fig.12, the

sine value sin θ and cosine values cos θ of the orientation angle

Region Previous
boundary

Address

Scale
factor

Down
sample

External memory

Keypoint 
buffer

Reuse
buffer

Patch
buffer

Fig. 10. The architecture of patch loader
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Fig. 11. The architecture of orientation estimation

are indexed by the orientation ID number. Then the coordinates

(x, y) of a pair of pixels are rotated:{
xr = x cos θ − y sin θ

yr = y cos θ + x sin θ
(7)

where (xr, yr) is the rotated coordinates of one pixel. The
addresses of pixel a and b is figured out by (xr, yr) to access
the intensity values in the reuse buffer and the patch buffer

respectively. The result of intensity comparison is shifted into

the descriptor register. Hence a 256-bit descriptor is generated

in 256 cycles.

IV. EXPERIMENTAL RESULTS

The proposed accelerator is programmed with Verilog HDL

and synthesized for Xilinx Zynq-706 evaluation board. It

hosts an ARM dual-core CPU, 2GB DDR3 RAM and an

XC7Z045 FPGA with enough resources to implement the

whole design. Table I shows the resource utilization of the

FPGA for ORB implementation. The detector module includes

the source buffer, the register file, the keypoint detection unit,

the smoothing unit, the downsampling unit, the NMS unit

and the candidate buffer in one scale. The descriptor module

contains the patch loader, the reuse buffer, the patch buffer,

the descriptor buffer, the orientation estimation unit and the

descriptor generation unit. For real-time verification, images

are captured by a CMOS sensor, transmitted to the FPGA

board and processed to generate ORB features. Then the

features are sent to a PC through a USB channel. The feature

matching operations between to images are completed on the

PC. For the convenience of test on a common dataset, images

from [11] are downloaded into the DRAM prepared for feature

extraction.

Reuse
buffer

Patch
buffer

Rotation
SIN/COS

LUT

Pattern
LUT

CMP Des(256b)

addr_b

addr_a

Orientation

Fig. 12. The architecture of descriptor generation

TABLE I
FPGA SYNTHESIS RESULT OF THE ORB ACCELERATOR

Module LUTs FFs BRAMs DSP48s

Detector module(one scale) 3568 2122 5 0

Global keypoint FIFO 173 236 4 0

Descriptor module 2398 2037 4 18

Total 11363 8403 28 18

A. Memory cost and BW requirement

This section evaluates the internal memory cost and the

external memory bandwidth requirement with optimizations.

Table II shows the sizes of memory required by the proposed

accelerator to support 1080p processing. The default patch

width for descriptor generation is set to 31. In the worst

case, it has to be scaled to 43 when the orientation angle

is 45◦. Because the source image is scanned in row-wise, the
patch buffer should have to store 43 lines of pixels per scale

for descriptor generation, which is unacceptable in embedded

systems. With offloading smoothed images to the external

memory, the internal memory size is dramatically reduced to

only 583.4kb in our implementation.

To reduce the requirement of external memory bandwidth,

we propose to store the smoothed images every other scale

and reuse patch data when computing descriptors. Table III

compares the size of access to the external memory with

proposed optimizations. The simulation is performed on 5

images from the dataset [11], and the number of keypoints is

limited to 1000. From the fifth column we can see the access

size of external memory is reduced by 42.77% with the two

proposed schemes on average. Normalized by the number of

pixels in an image, the average access size is 4.13bytes/pixel

approximately. Therefore, to process full-HD images in 30f-

ps, the bandwidth requirement of external memory is about

1.96Gbps, only 15.3% of the available bandwidth for 16-bit

DDR3 at 400MHz.

TABLE II
THE BREAKDOWN OF INTERNAL MEMORY COST

Buffer w/o ext MEM(kb) w ext MEM(kb)

Source buffer 310 310

Smoothed image buffer 60 60

Candidate buffer 97.5 97.5

Reuse buffer 0 14.5

Patch buffer 1904 14.5

Keypoint buffer 44 44

Descriptor buffer 28.2 28.2

Others 14.8 14.8

Total 2442.7 583.5
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TABLE III
THE SIZE OF ACCESS TO THE EXTERNAL MEMORY WITH THE PROPOSED

OPTIMIZATIONS

Image
Size

(byte)

No opt

Access size

(MB)

Low-scale

storage(A)

Access size

(MB)

A+Data resue

Access size

(MB)

bikes 700000 4.649 2.997 2.666

boat 578000 4.161 2.797 2.285

cars 565494 4.109 2.776 2.412

graf 512000 3.897 2.689 2.247

ubc 512000 3.897 2.689 2.243

Average 573499 4.143
2.790

(67.34%)

2.371

(57.23%)

B. Performance evaluation

We compare the performance of our design with both the

software solution on PC and previous hardware solutions.

First we program ORB algorithm using the OpenCV library

on an Intel i5-4670 processor at 3.40GHz with 8GB DRAM.

For a fair comparison, we set the same parameters as the

hardware accelerator for the software program. Both of them

extract 1000 features in 4 scales with a scale factor of 1.25

and a patch size of 31. Table IV shows the processing time of

software solution and our accelerator. For VGA images with

1000 keypoints, the performance of software and our hardware

solutions are 74.8ms and 23.8ms respectively. Actually, due to

the hybrid pipeline architecture, the processing speed of the

proposed accelerator mainly depends on the number of key-

points. Thus, for a given number of keypoints, the performance

improvement of the accelerator over the software solution will

increase when processing high-resolution images.

Table V lists the comparison of different hardware architec-

tures. Previous works in [7] [8]and [10] implement only FAST

and BRIEF algorithm with no support for scale and rotation

invariance. The work in [10] has the least internal memory size

since it is designed for VGA image processing. In reference

[9], the orientation estimation is greatly simplified, which

results in loss of matching accuracy. Compared with previous

works, our design implements the most features of ORB

algorithm. A significant reduction in internal memory cost is

TABLE IV
PROCESSING SPEED OF SOFTWARE AND HARDWARE FOR VGA IMAGES

Image SW(ms) HW(ms)

bikes 62 24.23

boat 93 24.02

cars 47 23.59

graf 94 23.87

ubc 78 23.27

Average 74.8 23.8

TABLE V
PERFORMANCE COMPARISON WITH RELATED WORKS

Work
Memory

(kb)

Clock

(MHz)
RI/OI

Number of

features

Speed

(fps)

[7] 1024 200 N/N 512 94.3

[8] 660 100 N/N - 48

[9] 1640 200 3/16 - 135

[10] 194 111 N/N - 141(VGA)

This work 583.4 100 4/32 1000 42

obtained by offloading large amount of image pyramid data

to external memory. It achieves 42fps for full-HD processing

at moderate 100MHz operating frequency and generates 1000

features per image which is suitable for practical applications.

C. Accuracy evaluation

To evaluate the quality of features generated by the proposed

accelerator, we adopt the recall versus 1-precision method
presented in [12]. Recall is the number of correctly matched

regions with respect to the number of corresponding matched

points between two images:

recall =
#correct matches

#correspondences
(8)

The number of false matches relative to the total number of

matches is represented by 1-precision:

1− precision =
#false matches

#correct matches+ #false matches
(9)

We run simulations on software and hardware with the

same configuration as the previous. The features generated on

hardware are transmitted to PC for matching. The matching

strategy is based on nearest neighbor (NN) searching. Fig.13

shows the curves of recall versus 1-precision of software and

hardware implementations as the matching threshold varies.

The matching result of hardware is slightly worse than that of

software. From the description in Section II and Section III,

we can conclude several reasons for matching performance

decrease. First, we use FAST response instead of Harris

response as the score of a keypoint when filtering low-

quality keypoints, and the latter one is more effective to
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Fig. 13. The matching performance of software and hardware solutions
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Fig. 14. The matching results of the proposed accelerator

remove keypoints along edges. Second, the truncation errors

derived from the conversion to fix-point format in orientation

estimation will accumulate and propagate along the data path,

and decrease the quality of descriptors. Third, when loading

image patch from a lower scale, the downsampling of the

non-overlapped region brings in little intensity errors, which

also has a effect on orientation estimation and descriptor

generation. Despite the matching performance degradation,

the overall matching accuracy of the features generated by

the accelerator is acceptable for practical use. Fig.14 shows

an example of feature matching based on the accelerator, the

number of keypoint is limited to less than 100 by setting a

high threshold for the convenience of display.

V. CONCLUSION

This paper proposes a hardware architecture for ORB algo-

rithm with full implementation. Several trade-offs are made to

reduce resource overhead and remain good feature matching

accuracy. The data path of the accelerator is loose-coupled

by the keypoint FIFO. Keypoints are extracted in multiple

scales concurrently while descriptors are built on keypoints,

which balances the workload in different pipeline stages. In

addition, large amounts of smoothed image data are stored to

external memory and fetched again for descriptor genration.

Therefore, the internal memory size is less than 36% of the

previous work [9]. To relieve the external memory bandwidth

requirement, smoothed images are stored every other scale.

Then, a shared data-reuse structure is introduced for patch

loading. These two schemes reduce the access size of the

external memory by 42.77%. Besides, a score recorder is

used to filter low-quality keypoints adaptively, resulting in

a more balanced distribution of keypoints in a frame. The

proposed architecture is implemented on FPGA at 100MHz.

It can extract 1000 features from 1080P images at 42fps. An

external memory bandwidth of 1.96Gbps and internal memory

of 583.4Kbits are suitable for real-time embedded applications.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[3] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105–119, Jan
2010.

[4] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and
P. Fua, “Brief: Computing a local binary descriptor very fast,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 7, pp. 1281–1298, July 2012.

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. IEEE, 2011, pp. 2564–2571.

[6] R. Mur-Artal, J. Montiel, and J. D. Tardós, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE Transactions on Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[7] J.-S. Park, H.-E. Kim, and L.-S. Kim, “A 182 mw 94.3 f/s in full hd
pattern-matching based image recognition accelerator for an embedded
vision system in 0.13-cmos technology,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 23, no. 5, pp. 832–845, 2013.

[8] M. Fularz, M. Kraft, A. Schmidt, and A. Kasinski, “A high-performance
fpga-based image feature detector and matcher based on the fast and
brief algorithms,” International Journal of Advanced Robotic Systems,
vol. 12, 2015.

[9] W. Zhu, L. Liu, G. Jiang, S. Yin, and S. Wei, “A 135-frames/s 1080p
87.5-mw binary-descriptor-based image feature extraction accelerator,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 26, no. 8, pp. 1532–1543, Aug 2016.

[10] O. Ulusel, C. Picardo, C. B. Harris, S. Reda, and R. I. Bahar, “Hardware
acceleration of feature detection and description algorithms on low-
power embedded platforms,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), Aug 2016, pp. 1–9.

[11] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. Van Gool, “A comparison of affine
region detectors,” International journal of computer vision, vol. 65, no.
1-2, pp. 43–72, 2005.

[12] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, no. 10, pp. 1615–1630, Oct 2005.

190



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


