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Robust Sparse Recovery in Impulsive Noise
via �p-�1 Optimization
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Abstract—This paper addresses the issue of robust sparse
recovery in compressive sensing (CS) in the presence of impulsive
measurement noise. Recently, robust data-fitting models, such
as �1 -norm, Lorentzian-norm, and Huber penalty function, have
been employed to replace the popular �2 -norm loss model to gain
more robust performance. In this paper, we propose a robust
formulation for sparse recovery using the generalized �p-norm
with 0 ≤ p < 2 as the metric for the residual error. To solve
this formulation efficiently, we develop an alternating direction
method (ADM) via incorporating the proximity operator of
�p-norm functions into the framework of augmented Lagrangian
methods. Furthermore, to derive a convergent method for the
nonconvex case of p < 1, a smoothing strategy has been employed.
The convergence conditions of the proposed algorithm have
been analyzed for both the convex and nonconvex cases. The
new algorithm has been compared with some state-of-the-art
robust algorithms via numerical simulations to show its improved
performance in highly impulsive noise.

Index Terms—Alternating direction method (ADM), augmented
Lagrangian methods, compressive sensing (CS), �p-norm data-
fitting, robust sparse recovery.

I. INTRODUCTION

COMPRESSIVE SENSING (CS) is a paradigm to acquire
sparse, or compressible, signals at a rate significantly

lower than that of the classical Nyquist sampling, which has
attracted much attention in recent years [1], [2]. Basically, the
CS theory states that if a signal x ∈ Rn is sparse, only a small
number of linear measurements y = Ax ∈ Rm (m < n) of
the signal suffice to accurately reconstruct it, A ∈ Rm×n is
the sensing matrix (also called the sampling or measurement
matrix). In most practical applications, the measurements are
inevitably contaminated by some noise. In this situation, the
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compressed measurements can be typically modeled as

y = Ax + n

where n ∈ Rm is additive measurement noise.
In the CS setting, the recovery of x from the compressed

measurement y is generally ill-posed because of m < n.
However, provided that x is sparse and the sensing matrix
A satisfies some stable embedding conditions [3], x can be
reliably recovered with an error upper bounded by the noise
strength. To reconstruct x such that it is of the sparsest structure
leads to the following optimization problem

minimize
x

‖x‖0 subject to ‖Ax − y‖2 ≤ ε (1)

where ‖x‖0 , formally called �0-norm, counts the number
of nonzero components in the vector x, ε > 0 bounds the
�2-norm of the residual error and is pre-determined by the
noise level. In general, solving the nonconvex problems (1) is
known to be NP-hard. Thus, convex relaxation methods are
often considered, such as basis-pursuit (BP) [4], [5] or LASSO
[6], which relax the �0-norm minimization into the �1-norm
minimization, e.g., BP denoising (BPDN),

minimize
x

‖x‖1 subject to ‖Ax − y‖2 ≤ ε. (2)

This constrained optimization problem can be converted into
an alternative unconstrained form (called LASSO)

minimize
x

{
1
μ
‖Ax − y‖2

2 + ‖x‖1

}
(3)

where μ > 0 is a regularization parameter that controls a
tradeoff between the residual error term and the regularization
term. Under certain conditions, the solution of the �1-norm
minimization problem coincides with that of �0-norm mini-
mization problem [7], [8]. The �1-norm minimization problems
are more tractable due to their convexity and hence most widely
used in sparse reconstruction.

This work mainly focuses on the issue of robust denoising
models in CS [9]. As in (1)–(3) and many other variants, the
�2-norm data-fitting model, which is optimal for Gaussian
noise in the maximum likelihood sense, is the most widely used
one. However, in practical applications, the measurement noise
may be of different kinds or combinations. Impulsive noise
is a typical case which can model large errors in observations
and has been widely studied in robust statistics [10]. Impulsive
corruption in measurements may come from missing data in the
measurement process, transmission problems [11]–[13], faulty
memory locations [14], buffer overflow [15], and has been
raised in many image and video processing works [16]–[19].
In these cases, the �2-norm data-fitting model is inefficient as
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it is well-known that least-squares based estimators are highly
sensitive to outliers in the observations.

Recently, various robust formulations have been proposed for
CS to suppress the outliers in measurements. In [20]–[22], the
Lorentzian-norm has been employed as the metric for the resid-
ual error, and a geometric optimization problem has been intro-
duced for sparse signal recovery. In [23], the �1-norm has been
used as the data-fitting model to obtain a robust formulation as

minimize
x

{
1
μ
‖Ax − y‖1 + ‖x‖1

}
. (4)

It has been shown in [23] that, when the measurements contain
large errors or impulsive noise, the �1-norm loss function can
result in dramatically better performance compared with the �2-
one. Subsequently, more efficient alternating direction methods
(ADM) for the problem (4) have been proposed in [24]. Mean-
while, an extension to �1-norm constrained �1-minimization
problem has been given in [25]. In [26], the Huber penalty func-
tion has been used to design robust formulation for sparse re-
covery. Subsequently, efficient first-order algorithms have been
proposed in [27] to solve the Huber-loss based formulation and
its several variants. It has been shown in [27] that, the �1-norm
loss based formulation (4) offers considerable gain over the Hu-
ber and Lorentzian-norm loss based ones. Notably, the �1-norm
loss function has also been employed in sparse representation
based face recognition [28], channel estimation [29], and signal
separation [30], [31] to achieve robustness. Moreover, the
�0-norm loss has been used in [60]–[63] for robust restoration
of images corrupted by salt-and-pepper impulsive noise.

There also exists Bayesian robust algorithm [32], [59], which
extend the Bayesian sparse recovery method [56] and model the
impulsive noise as Student-t and Gaussian mixture distributions,
respectively. Moreover, robust recovery in the presence of satu-
ration error in practical quantization has been addressed in [33].

In this paper, we use the generalized �p -norm, 0 ≤ p < 2, as
the loss function for the residual error to propose the following
robust formulation

minimize
x

{
1
μ
‖Ax − y‖p

p + ‖x‖1

}
. (5)

When 0 < p < 1, ‖·‖p
p is the �p quasi-norm defined in a similar

manner as the case of p ≥ 1, i.e., ‖v‖p
p =

∑m
i=1 |vi |p . Note

that, the formulations (3) and (4) can be viewed as two special
cases of (5) with p = 2 and p = 1, respectively.

The intuition behind utilizing �p -norm loss function is that,
compared with the quadratic function, it is a less rapidly increas-
ing function when p < 2, and, accordingly, is less sensitive to
large outliers, especially when p is small. Notably, the �p -norm
cost function has been widely used in various signal process-
ing applications for developing robust algorithms in impulsive
noise, such as array beamforming [34], [35], direction-of-arrival
estimation [36], time delay estimation [37], and spectrum sens-
ing [38]. In these works it is commonly restricted to the case of
p ≥ 1 because p < 1 leads to intractable nonconvex problems. In
this work, the nonconvex case is also considered for robust CS.

Except for the special case of p = 1, the problem (5) has still
not been well addressed. When 1 < p < 2, it can be solved by

traditional convex optimization methods such as interior-point
methods. Specifically, this problem can be converted into [39]

minimize
x

‖x‖1 subject to ‖Ax − y‖p ≤ ε (6)

where ε > 0 bounds the �p -norm of the residual error. A
semi-definite program (SDP) conversion method has been
proposed in [40] to handle the problem (6). It decomposes the
�p -norm inequality constraint into a number of linear matrix
inequalities and recast the problem into a SDP. However, this
approach is generally inefficient and impractical for large-scale
problems. Moreover, when 1 < p < 2, the �p -norm is smooth
and convex but its gradient is not Lipschitz continuous (not
bounded), thus, traditional proximal gradient methods cannot
be directly applied.

When 0 ≤ p < 1, the problem (5) is more difficult to solve
since in addition to the nonconvexity of the loss term, both
the loss and regularization terms are nonsmooth. This case
has still not been reported in the open literatures. The main
contributions of this work are as follows.

A. Contributions

First, we provide some analysis on the proposed formulation.
We show that, even when the noise is highly impulsive with
infinite variance, this formulation using an appropriate choice
of p has the potential to stably recover the desired signal with
a finite recovery error, e.g., using p < α in α-stable noise.

Second, we propose an efficient ADM, termed Lp-ADM,
for the optimization problem (5). The new algorithm is derived
via incorporating the proximity operator of �p -norm functions
into the framework of augmented Lagrangian methods, which
facilitates solving (5) efficiently in a unified framework for
both the convex and nonconvex cases. Furthermore, for the
nonconvex case of p < 1, a smoothing strategy has been
employed to derive a convergent algorithm.

Third, the convergence condition of the new algorithm
has been analyzed for both the convex and nonconvex cases.
Finally, we have compared the new algorithm with some
recently proposed robust algorithms via simulations. The
results demonstrated that, with an appropriate choice of p, e.g.,
p < 1, it has the capability to achieve the state-of-the-art robust
performance in highly impulsive noise.

B. Outline and Notations

The rest of this paper is organized as follows. Section II pro-
vides some analysis on the proposed formulation. In Section III,
we introduce the proximity operator for �p -norm functions,
which is employed in the proposed algorithm. In Section IV,
the new algorithm is presented. Section V contains convergence
analysis and Section VI provides experimental results. Finally,
Section VII ends the paper with concluding remarks.

Notations: λmax(·) denotes the maximal eigenvalue of a ma-
trix. E(·), 〈·, ·〉 and (·)T stand for the expectation, inner product
and transpose, respectively. ∇f(·) and ∂f(·) stand for the gradi-
ent and subdifferential of the function f . sign(·) denotes the sign
of a quantity with sign(0) = 0. In stands for an n × n identity
matrix. ‖ · ‖p denotes the �p -norm. dist(x, S) := inf{‖y − x‖ :
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y ∈ S} denotes the distance from a point x ∈ Rn to a subset
S ⊂ Rn . X 
 0 means that X is positive semidefinite.

II. ON THE PROPOSED ROBUST FORMULATION

A. Bayesian Sparse Recovery in Impulsive GGD Noise

Impulsive noise can be well modeled as symmetric α-stable
(SαS) process [9], which can be conveniently described by the
characteristic function

ϕ(ω) = exp (jaω − γα |ω|α )

where 0 < α ≤ 2 is the characteristic exponent which measures
the thickness of the tail of the distribution, a is the location
parameter, and γ > 0 is the scale parameter. The smaller the
value of α, the thicker the tail of the SαS distributions and
hence the more impulsive the noise is.

Except for a few special cases, there are no closed-form
expressions for the probability density function (PDF) of the
SαS distributions. Thus, it is difficult to obtain the MAP
estimate of x when the noise is modeled as an SαS distribution.
The generalized Gaussian distribution (GGD) is an alternative
that can also be used to model impulsive noise. The PDF of a
zero-mean GGD variable x is given by

f(x) =
v

2σΓ( 1
v )

exp
(
−|x|v

σv

)
(7)

where Γ(·) is the gamma function, v > 0 denotes a shape
parameter which controls the distribution shape, σ > 0 is the
scale parameter. The flexible parametric form of the GGD
(7) adapts to a large family of symmetric distributions, from
super-Gaussian (v < 2) to sub-Gaussian (v > 2), including
specific distributions such as Laplacian (v = 1) and Gaussian
(v = 2). When v < 2, the GGD shows a heavy tail and hence
is suitable for modeling impulsive noise.

Assume that the (impulsive) noise samples are independently
and identically distributed (i.i.d.) GGD with zero-mean, the
PDF of n is

f(n) =
vN

[2σnΓ( 1
v )]N

exp
(
−‖n‖v

v

σv
n

)
.

Then, the conditional PDF f(y|x) also follows an i.i.d. GGD as

f(y|x) =
vN

[2σnΓ( 1
v )]N

exp
(
−‖Ax − y‖v

v

σv
n

)
.

For sparse signals, the i.i.d. zero-mean Laplacian distribution
prior is of particular interest to the Bayesian community for
dimensionality reduction problems, e.g.,

f(x) =
1(√

2σx

)N
exp

(
−
√

2‖x‖1

σx

)
.

From the Bayes formula, the a posteriori PDF of x can be
expressed as

f(x|y) ∝ f(y|x)f(x)

= C exp

(
− 1

σv
n

‖Ax − y‖v
v −

√
2

σx
‖x‖1

)

where C is a constant. Consequently, the MAP estimate of x
given y can be obtained via minimizing (5) with μ =

√
2σp

n/σx .
For highly impulsive noise with very heavily tailed distri-

butions, it may be required that p < 1. In this case, the loss
function in problem (5) is nonconvex, which leads to a NP-hard
optimization problem. Moreover, the MAP formula sheds some
light on the optimal choice of the regularization parameter μ,
which is related with the statistical information of the noise and
the true signal.

B. Analysis on �p -Norm Data-Fitting Model

In this section, we show that with an appropriately choice of
p, the proposed formulation has the capability to successfully
recover the desired signal with a finite �2-norm error when the
noise is highly impulsive with infinite variance.

A well-known condition of the sensing matrix A ensuring
the satisfactory recovery of x is called restricted isometry
property (RIP) [41]. For each integer s = 1, 2, . . ., define the
s-restricted isometry constant δs of A, which is the smallest
positive number such that

(1 − δs)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δs)‖z‖2
2

holds for all s-sparse vectors. It has been shown in [41] that
if ‖n‖2 ≤ ε and δ2s <

√
2 − 1, the solution to the BPDN

problem (2), denoted by x̂, obeys

‖x̂ − x‖2 ≤ Cε (8)

where C is a constant depends on δ2s . This result indicates
that, when the noise variance is finite, BPDN can stably recover
the desired signal with an error bounded by the noise strength.
However, for highly impulsive noise with infinite variance,
BPDN (also LASSO) is no longer stable in statistics. In this
case, the formulations (5) and (6) are superior.

Theorem 1: Suppose that the sensing matrix A satisfies the
RIP of order 2s with δ2s <

√
2 − 1. Then for any signal x sup-

ported on T0 with |T0 | ≤ s, and any measurement noise n with
‖n‖p ≤ ε, 0 ≤ p < 2, the solution to (6), denoted by x̂, obeys

‖x̂ − x‖2 ≤ Csε (9)

where Cs is a constant depends on δ2s .
Proof: See Appendix A. �
Remark: In Theorem 1, the condition of the noise is relaxed

to ‖n‖p ≤ ε, 0 ≤ p < 2, while that of the BPDN problem is
‖n‖2 ≤ ε. This implicitly relaxes the condition of the noise for
stable recovery (in statistics) from that, its variance is finite, to
that, its pth-order fractional-lower-order moment is finite. That
means the proposed formulation has the capability to stably
recover x when the noise is highly impulsive with infinite
variance, e.g., α-stable processes, while BPDN (also LASSO)
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is unstable in this case. More specifically, for an SαS random
variable x with 0 < α < 2, zero location parameter, and scale
parameter γ, its pth-order moment is finite when p < α but
infinite when p ≥ α [42]{

E{|x|p} = C(p, α)γp , 0 < p < α

E{|x|p} = +∞, p ≥ α
(10)

with C(p, α) = 2p+1Γ( p+1
2 )Γ(− p

α )[α
√

πΓ(− p
2 )]−1 . Accord-

ingly, assume that the noise samples are i.i.d. SαS variables,
we have E{‖n‖p

p} < +∞ if 0 < p < α and E{‖n‖p
p} = +∞

if p ≥ α. For such heavily tailed impulsive noise, stable recon-
struction by the proposed robust formulation is guaranteed if
the value of p is chosen to be less than α.

III. PROXIMITY OPERATOR FOR �p -NORM FUNCTIONS

Recall the proximity operator of a function g(x) : x ∈ Rm

with penalty η [43]

proxg ,η (t) = arg min
x

{
g(x) +

η

2
‖x − t‖2

2

}
. (11)

For the case of g(x) = a‖x‖p
p with 0 ≤ p < 2 and a > 0,

proxg ,η reduces to solving m univariate minimization problems
and thus is easy to compute.

Case 1: p = 0. In this case, the proximity operator becomes
the well-known hard-thresholding operator

proxg ,η (t)i =

{
0, |ti | ≤

√
2a/η

ti, otherwise
, i = 1, . . . ,m (12)

where ti is the i-th element of the vector t.
Case 2: 0 < p < 1. The proximity operator in this case can

be computed as [44], [45]

proxg ,η (t)i =

⎧⎪⎨
⎪⎩

0, |ti | < τ

{0, sign(ti)β}, |ti | = τ

sign(ti)zi, |ti | > τ

, i = 1, . . . ,m

(13)
where β = [2a(1 − p)/η]

1
2−p , τ = β + apβp−1/η, zi is the

solution of h1(z) = apzp−1 + ηz − η|ti | = 0 over the region
(β, |ti |). Since h1(z) is convex, when |ti | > τ , zi can be effi-
ciently solved using a Newton’s method. For the special cases
of p = 1

2 or p = 2
3 , the proximal mapping can be explicitly

expressed as the solution of a cubic or quartic equation [46].
Case 3: p = 1. In this case, the proximity operator has a

closed-form expression as [47]

proxg ,η (t)i = Sa/η (t)i = sign(ti)max{|ti | − a/η, 0}

for i = 1, . . . ,m, where Sa : Rm → Rm is the well-known
soft-thresholding or shrinkage operator.

Case 4: 1 < p < 2. In this case, g(x) is convex and smooth,
and the proximity operator satisfies [43]

proxg ,η (t)i = sign(ti)zi (14)

where zi is the solution of the equality

h2(z) = pazp−1 + ηz − η|ti | = 0, z ≥ 0. (15)

Note that, h2(z) is an increasing and concave function for z ≥ 0,
with h2(0) < 0 and h2(|ti |) > 0 when ti �= 0. Thus, when ti �=
0, the solution of (15) satisfies 0 < zi < |ti | and can be com-
puted by a Newton’s method. The starting point can be chosen
to be a positive lower bound of the solution as (see Appendix B)

z0
i =

{
φ

1
p −1 , φ < 1

φ, φ ≥ 1
(16)

with φ = η|ti |/(pa + η). In practical implementation, φ
1

p −1

may be very small when φ < 1 and p → 1+ . To address this
problem, we preset a small constant δ > 0 (e.g., δ = 10−10),
which is used as the starting point z0

i = δ if h2(δ) ≤ 0 and,
otherwise, we directly set zi = 0 since the true solution is very
small and less than δ when h2(δ) > 0.

IV. PROPOSED ALGORITHM

ADM is a powerful optimization framework that is suitable
for large-scale problems arising in machine learning and signal
processing, which has been developed long ago and reviewed
recently in [48]. In the following we propose a computationally
efficient algorithm for the �p -�1 minimization problem (5) based
on ADM, with the use of the proximity operator introduced
in Section III. In the nonconvex case of p < 1, since both the
loss and regularization terms in (5) are nonsmooth and the loss
term is nonconvex, the directly extended ADM algorithm is not
guaranteed to converge. To derive a convergent algorithm for
the nonconvex case, we use a smoothing strategy and develop
a proximal ADM algorithm, which is guaranteed to converge if
the penalty parameter is chosen sufficiently large.

A. Lp-ADM Algorithm Without Smoothing

In the ADM framework, the �p -norm loss term and the
nonsmooth �1-regularization term are naturally separated. It
decouples the variables and makes the problem easy to tackle.
More specifically, using an auxiliary variable v ∈ Rm , the
problem (5) can be equivalently reformulated as

min
x,v

{
1
μ
‖v‖p

p + ‖x‖1

}
subject to Ax − y = v. (17)

The corresponding augmented Lagrangian function is given by

Lρ(v,x,w) =
1
μ
‖v‖p

p + ‖x‖1 − 〈w,Ax − y − v〉

+
ρ

2
‖Ax − y − v‖2

2

where w ∈ Rm is the dual variable, ρ > 0 is a penalty param-
eter associated with the augmentation. Then, ADM applied to
(17) consists of the following iterations

vk+1 = arg min
v

(
1
μ
‖v‖p

p +
ρ

2
‖Axk −y−v−wk

ρ
‖2

2

)
(18)

xk+1 = arg min
x

(
‖x‖1 +

ρ

2
‖Ax−y−vk+1−wk

ρ
‖2

2

)
(19)

wk+1 = wk−ρ(Axk+1 − y − vk+1). (20)
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The x-subproblem (19) itself is an �2-�1 minimization prob-
lem as (3). Since ADM would converge even when the inner
steps are not carried out exactly [49], we can approximately
solve this subproblem by linearizing the quadratic term of its
objective function. More precisely, at a given point xk we have

1
2
‖Ax − uk‖2

2 ≈ 1
2
‖Axk − uk‖2

2

+ 〈x − xk , d(xk )〉 +
L1

2
‖x − xk‖2

2

where d(xk ) = AT (Axk − uk ), uk = y + vk+1 + wk/ρ,
L1 > 0 is a proximal parameter. With this linearization, the
x-subproblem degenerates to the soft-thresholding operator

xk+1 = S1/(ρL1 )

(
xk − 1

L1
AT (Axk − uk )

)
. (21)

The v-subproblem (18) is a form of the proximity operator
(11), which can be efficiently solved as

vk+1 = prox 1
μ ‖v‖p

p ,ρ(b
k ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

solved as (12), p = 0

solved as (13), 0 < p < 1

S1/(μρ)(bk ), p = 1

solved as (14), 1 < p < 2

ρbk/(ρ + 2/μ), p = 2

where bk = Axk − y − wk/ρ.

B. Lp-ADM Algorithm Using Smoothed �1-Regularization For
the Nonconvex Case

As will be shown in Section V, in the convex case of p ≥ 1,
the above ADM algorithm with an appropriate choice of L1
is guaranteed to converge. However, in the nonconvex case
of p < 1, this algorithm is not guaranteed to converge. To
address this problem, we propose to solve a smoothed version
of the problem (5) when p < 1. Specifically, the �1-norm
regularization in (5) is smoothed as

‖x‖1,ε =
∑

i

(
x2

i + ε2) 1
2 .

ε > 0 is an approximation parameter and we have

lim
ε→0

‖x‖1,ε = ‖x‖1

which means that with a small ε, ‖x‖1,ε accurately approx-
imates the �1-norm of x. More importantly, with ε > 0, the
gradient of ‖x‖1,ε is Lipschitz continuous. In this case, the
derived algorithm is guaranteed to converge if the penalty
parameter is chosen sufficiently large such that ρ > C

ε , where
C is a constant depends on A and a proximal parameter in the
x-subproblem (see Section V).

Using ‖x‖1,ε as the regularization, the problem becomes

min
x,v

{
1
μ
‖v‖p

p + ‖x‖1,ε

}
subject to Ax − y = v. (22)

The corresponding augmented Lagrangian function is

Lρ,ε(v,x,w) =
1
μ
‖v‖p

p + ‖x‖1,ε − 〈w,Ax − y − v〉

+
ρ

2
‖Ax − y − v‖2

2 .

The x-subproblem becomes

xk+1 = arg min
x

(
‖x‖1,ε +

ρ

2
‖Ax − uk‖2

2

)
. (23)

In this case, the objective function in (23) is smooth, thus
general iterative methods can be used to solve this subproblem.
However, to gain overall efficiency of the algorithm, we use
the standard trick for ADM again to solve (23) approximately.
Specifically, we linearize the term ‖x‖1,ε at a given point xk as

‖x‖1,ε ≈ ‖xk‖1,ε + 〈x − xk , d2(xk )〉 +
L2

2
‖x − xk‖2

2

which results in the following closed-form solution

xk+1 = (L2In + ρAT A)−1 [L2xk − d2(xk ) + ρAT uk ]
(24)

where d2(xk ) = ∇‖xk‖1,ε with d2(xk )i = xi(x2
i +ε2)−

1
2 ,

L2 > 0 is a proximal parameter. Note that, we do not linearize
the quadratic term in the objective as the previous case since it
does not yield a closed-form solution when ε > 0.

In computing (24), Cholesky decomposition can be used
to reduce the computational complexity (see [48] for detail).
Moreover, when the problem size is large, it may be worth using
an iterative method to solve (23) rather than the approximate
direct method (24). Specifically, for large-scale problems, the
direct method may not work due to the requirement of too
much memory. In this case, the minimization (23) can be more
efficiently carried out by any first-order iterative method, such
as the gradient method, conjugate gradient method, and the
quasi-Newton methods.

Furthermore, when the sensing matrix A is orthonormal, i.e.,
AAT = Im , the inversion in (24) can be avoided. Specifically,
using the matrix inversion lemma we have

(L2In + ρAT A)−1 =
1
L2

In − ρ

L2(L2 + ρ)
AT A.

In some applications with high-dimensional problems (e.g.,
n = 106), the sensing matrix A is hardly explicitly available
and instead implicit representations are usually used. In this
case, the x-subproblem can be computed as

xk+1 =
1
L2

zk − ρ

L2(L2 + ρ)
AT (Azk )

with zk = L2xk − d2(xk ) + ρAT uk . This formulation facil-
itates the fast computation of xk+1 when the multiplication of
A (and AT ) with a vector can be rapidly obtained, e.g., for A
be a partial DCT matrix.

C. Regularization Path for Robust Recovery

As well as other unconstrained formulations for sparse
recovery such as (3) and (4), the performance of the proposed
formulation is closely related to the selection of regularization
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parameter μ. In these problems, μ balances the fidelity and
sparsity of the solution. A larger value of μ tends to give a
sparser solution, but would result in larger residual error. In
general, the optimal value is dependent on the noise, the true
signal, and the value of p. A popular and useful approach is to
compute the recovery along the regularization path, and select
the optimal value based on the statistical information of the
noise. More specifically, given an estimated noise variance
σ2

n , the optimal μ is selected as the maximum value of μ
such that the bound constraint on the residual is met, e.g.,
‖Ax̂ − y‖2

2 ≤ ε with ε = mσ2
n for the LASSO problem (3).

To extend this selection approach to the proposed robust
formulation, we consider a generalized constraint on the
residual, ‖Ax̂ − y‖p

p ≤ ε, where ε in this case bounds the p-th
order moment of the noise. The p-th order moments for three
typical impulsive noise are given as follows.

1) GGD noise. For i.i.d GGD noise, the p-th order moment
is given by

E{‖n‖p
p} =

mσpΓ( p+1
v )

Γ( 1
v )

. (25)

2) Gaussian mixture noise. Consider a two-term Gaussian
mixture model

(1 − ξ)N (0, σ2) + ξN (0, κσ2) (26)

where 0 ≤ ξ < 1 denotes the portion of outliers in the
noise and κ > 1 indicates the strength of outliers. This
model is an approximation to Middleton’s Class A noise
model, where the background noise is represented by
the first term while the impulsive property of the noise is
captured by the second term. The total noise variance is
(1 − ξ + κξ)σ2 . The p-th order moment of such a noise
process is given by

E{‖n‖p
p} =

m2
p
2 σpΓ( p+1

2 )(1 − ξ + κ
p
2 ξ)√

π
. (27)

3) SαS noise. For i.i.d. SαS noise with zero location
parameter and scale parameter γ, it follows from (10) that{

E{‖n‖p
p} = mC(p, α)γp , 0 < p < α

E{‖n‖p
p} = +∞, p ≥ α

. (28)

Such statistical information of the noise is essential
in constructing the bound on the residual. In practical
applications, such information can be estimated via incor-
porating (25)–(28) with standard statistical methods, e.g.,
robust parameter estimation for α-stable distributions [9],
maximum likelihood parameter estimation for GGD [50].

V. CONVERGENCE ANALYSIS

This section gives two convergence conditions of Lp-ADM
when the x-subproblem is updated via (21) for p ≥ 1 and
(24) for p ≥ 0, respectively. While the convergence properties
of ADM have been extensively studied for the convex case,
there have been only a few studies for the nonconvex case.
The convergence condition for the convex case is derived
following straightforwardly from [23], whilst the condition

for the nonconvex case is derived by extending the approaches
proposed very recently in [51]–[53].

First, we give the convergence condition of Lp-ADM for
arbitrary p ≥ 1 when the x-subproblem is updated via (21).
The convergence for p = 2 and p = 1 has been analyzed in
[23] and [24], respectively.

Theorem 2: For any ρ > 0, p ≥ 1, and arbitrary starting
point (x0 ,w0), the sequence {(vk ,xk ,wk )} generated by Lp-
ADM via (18), (21) and (20) with L1 > λmax(AT A) converges
to (v∗,x∗,w∗), where (v∗,x∗,w∗) is a solution of (17).

Proof: See Appendix C. �
Remark: The convergence condition given in Theorem 2 is

the same as that for p = 1 [24, Theorem 1] and p = 2 [23,
Theorem 2.1] (with a special choice of γ = 1). That is reason-
able since in each iteration the v-subproblem updated via (18)
descends for any p ≥ 1 at arbitrary xk and wk , while the lin-
earized x-subproblem updated via (21) is guaranteed to descend
at arbitrary vk+1 and wk if the proximal parameter is chosen to
be a Lipschitz constant of d1(x), i.e., L1 > λmax(AT A). From
ADM theory, an ADM algorithm would converge even when the
subproblems are not solved exactly, provided that certain sub-
optimality measures in the minimizations are summable [49].

Next, we give a sufficient condition for the convergence
of Lp-ADM for the generalized case of p ≥ 0 when the
x-subproblem is updated via (24).

Theorem 3: Suppose that ε > 0 and AAT 
 μAIm with
some μA > 0, then, for any p ≥ 0 if L2 = α

ε > 1
2ε (i.e., α > 1

2 )
and

ρ >
C

ε
with C =

4(2α2 + 2α + 1)
μA (2α − 1)

, (29)

the sequence {(vk ,xk ,wk )} generated via (18), (24) and (20)
converges to a stationary point of the problem (22).

Proof: See Appendix D. �
Remark: The sufficient condition given in Theorem 3 is

especially useful for the nonconvex case of p < 1. The as-
sumption there exists some μA > 0 requires that A be full-row
rank, which is easily fulfilled in CS setting with m < n. For
example, for an orthonormal sensing matrix, we have μA = 1.
When ε → 0, the problem (22) reduces to the problem (17) and
the error between the optimal solutions of these two problems
vanishes. However, in this case the sufficient condition (29) re-
quires ρ → ∞. In general, an ADM tends to be very slow when
the penalty parameter ρ gets very large. Thus, a tradeoff should
be made between the approximating accuracy and the algorithm
convergent rate. A warm-start strategy to speed up the algorithm
is to use a properly small starting value of ρ and gradually in-
crease it by iteration until reaching the target value. Theorem 3
still applies if ρ becomes fixed after a finite number of
iterations. Moreover, in practical applications, an initialization
is usually used for the nonconvex case, which is advantageous
for improving the convergence of Lp-ADM. There also exist
acceleration schemes proposed recently for ADM in [54],
which can be used to effectively accelerate the new algorithm.

In the nonconvex case, a good initialization is crucial for Lp-
ADM to achieve satisfactory performance. Intensive numerical
studies show that, when the impulsive noise has finite variance,
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e.g., GGD and Gaussian mixture noise, Lp-ADM can achieve
satisfactory performance with an initialization by a standard
CS method, such as BPDN or LASSO. As shown in (8), the
recovery error of such a method is finite and upper bounded by
the noise strength in this case. However, when the impulsive
noise has infinite variance, e.g., SαS noise with α < 2, such an
initialization may lead to poor performance of Lp-ADM, since
a standard CS method is unstable in this case. For example, as
will be seen in Section VI, the Homotopy solver, which solves
the LASSO problem (3), performs quite poorly in highly im-
pulsive SαS noise. Thus, it is recommended to employ a robust
(convex) method for initialization, e.g., Lp-ADM with p = 1.

VI. NUMERICAL EXPERIMENTS

This section illustrates the robustness of the new method via
numerical simulations, compared with a standard reconstruc-
tion algorithm, Homotopy [55], an �q -regularized algorithm,
Lq-min [57], and four robust algorithms, Huber-fast iterative
shrinkage/thresholding algorithm (FISTA) [27], YALL1 [23],
BP-JP [31], and BP-SEP [58]. Homotopy solves the standard
CS problem (3) and is generally faster than the interior-point
algorithm. Lq-min solves a linear constrained �q -minimization
problem with 0 < q ≤ 1. Huber-FISTA solves a robust for-
mulation, which employs the Huber penalty function as the
data-fitting model, using the FISTA. YALL1 solves the �1-�1
problem (4) using an ADM scheme. We also use an ADM
procedure to solve BP-JP and BP-SEP by firstly converting
the constrained formulations into unconstrained formulations.
Matlab code for the proposed algorithm is available at
https://github.com/FWen/Lp-Robust-CS.git.

We use a simulated K-sparse (with K = 30) signal of length
n = 512 in the experiments, which is constructed as follows.
First, the positions of the K nonzeros are uniformly randomly
chosen. Then, the amplitude of each nonzero entry is generated
according to the Gaussian distribution. An m × n orthonormal
Gaussian random matrix is used as the sensing matrix A. The
number of random measurements is set to m = 200 unless
otherwise specified. Each provided experimental result is an
average over 200 independent runs, except for Figs. 1 and 7.

The algorithms are tested in three types of impulsive noise:
GGD, Gaussian mixture, and SαS. The noise is appropriately
scaled and added to generate noisy measurements with desired
noise levels. For the first two types of noise, the desired signal-
to-noise ratio (SNR), measured in decibel (dB), is defined by

SNR = 20log10

(
‖Axo − E{Axo}‖2

‖n‖2

)

where xo stands for the true signal. As the variance of an SαS
noise process is infinite for α < 2, we use the scale parameter γ
to quantify the strength of SαS impulsive noise. For GGD and
Gaussian mixture noise, we assume the p-th order moments
(25) and (27) are known in computing the regularization path
for Lp-ADM (0 ≤ p ≤ 2), Homotopy (p = 2), and YALL1
(p = 1). For SαS noise with α < 2, the true noise strength
‖n‖p

p is used in computing the regularization path for these
algorithms, since the p-th order moment is infinite when p ≥ α.

Fig. 1. Convergence behavior of Lp-ADM in the nonconvex case with
p = 0.5, ρ = 2 × 104 , μ = 1 and SNR = 40 dB. Left: Gaussian noise. Right:
Impulsive Gaussian mixture noise with ξ = 0.1, κ = 1000.

When p ≥ 1, Lp-ADM is run with ρ = 102 and the
x-subproblem is updated via (21) with L1 = 2. When p < 1,
Lp-ADM is run with ρ = 2 × 104 and the x-subproblem is
updated via (24) with ε = 10−3 and L2 = 1

ε . In implementing
Lp-ADM in the nonconvex case, we firstly run it with p = 1 to
obtain a starting point. Moreover, we set a stopping tolerance
parameter of 10−6 (for both the primal and dual residuals) and
a maximal iteration number of 2000 for it.

With the above settings, Lp-ADM is guaranteed to converge
in the nonconvex case. Fig. 1 shows the typical convergence
behavior of Lp-ADM in the nonconvex case in two conditions
with the x-subproblem is solved by (21) and (24), respectively.
In both conditions, we set ρ = 2 × 104 . It can be seen that,
Lp-ADM does not converge when using (21).

A. Performance of Lp-ADM in Different Impulsive Noise

In the first group of experiments, we evaluate the new
algorithm in various noise conditions with different noise levels
and types. The value of p is varied in the interval [0 2]. The
performance is evaluated in terms of relative error of recovery
defined as ‖x̂ − xo‖2/‖xo‖2 , where x̂ is the recovered version
of the true signal xo .

1) Generalized Gaussian Noise: Fig. 2 displays the averaged
relative error of recovery of Lp-ADM versus p in GGD noise.
Different values of the shape parameter are considered to gener-
ate GGD noise with different impulsive properties, e.g., v = 2
(Gaussian noise), v = 1 (Laplace noise), v = 0.5, and v = 0.2.
It can be clearly seen from Fig. 2 that, in the Gaussian and
Laplace noise conditions, using p = 2 generally yields better
recovery performance than using p < 2. Only in the case of
v = 0.2, the most impulsive case among the four, using p < 2
can gain distinct advantage over p = 2. The results indicate that,
for GGD noise, the �2-norm loss function performs sufficiently
well in Gaussian and slightly impulsive conditions, e.g., v ≤ 0.5,
but is inefficient in more impulsive conditions, e.g., v = 0.2.

Another interesting observation is that, when the noise
level is fixed, using p = 2 yields approximately the same
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Fig. 2. Recovery performance of Lp-ADM versus p in generalized Gaussian
noise. Top Left: v = 2 (Gaussian noise). Top Right: v = 1 (Laplace noise).
Bottom left: v = 0.5. Bottom right: v = 0.2.

recovery performance in the four conditions with different
impulsiveness. This is reasonable since the recovery error of
the �2-�1 formulation is bounded by the noise variance (see (8))
which does not change when the shape parameter v varies from
2 to 0 in the case of fixed noise power. However, the p-th (p < 2)
order moment of the noise decreases significantly when v varies
from 2 to 0 (see (25)). Thus, from Theorem 1, performance
gain can be expected via using p < 2 when the noise gets more
impulsive (i.e., v gets small). For example, in the case of SNR
= 40 dB, the recovery errors of Lp-ADM using p = 0.6 are 1.16
× 10–2, 1.13 × 10–2, 0.97 × 10–2, and 0.58 × 10–2, respectively,
in the four conditions. Note that, the discussion here holds only
when the noise has finite variance, e.g., GGD and Gaussian
mixture noise, and it breaks down when the noise has infinite
variance, e.g., SαS impulsive noise as shown in Fig. 4.

2) Gaussian Mixture Noise: Fig. 3 plots the recovery
performance of Lp-ADM versus p in Gaussian mixture
noise with ξ = 0.1. Two impulsive conditions with κ =
100 and κ = 1000 are considered. It is clear that, in both
conditions, the averaged recovery error is approximately a
monotonically increasing function of p when p > 0.5. Using an
appropriate p < 1 has the potential to achieve distinctly better
performance compared with p ≥ 1. This advantage is more
significant in the more impulsive condition with κ = 1000.
Again, it can be observed that, when the SNR is fixed, using
p = 2 generally yields the same performance in the two
conditions, but using p < 2 (with a fixed value of p) can result
in more accurate recovery in the more impulsive condition.

Fig. 3. Recovery performance of Lp-ADM versus p in Gaussian mixture
noise with ξ = 0.1. Left: κ = 100. Right: κ = 1000.

Fig. 4. Recovery performance of Lp-ADM versus p in SαS noise. Left:
α = 1 (Cauchy noise). Right: α = 0.5.

For example, in the case of SNR = 40 dB, the recovery errors
of Lp-ADM using p = 0.6 are 5.0 × 10–3 and 1.9 × 10–4

respectively in the two conditions.
3) SαS Noise: Fig. 4 shows the recovery performance of

Lp-ADM versus p in SαS noise. Two impulsive conditions,
with characteristic exponents α = 1 (Cauchy noise) and
α = 0.5, and three noise levels, with scale parameters of
γ ∈ {10−2 , 2 × 10−3 , 5 × 10−4}, are considered. Unlike the
cases of GGD and Gaussian mixture noise, the variance of such
SαS noise is infinite. In this case, the �2-norm loss formulation
is unstable in statistics. Accordingly, as shown in Fig. 4, the per-
formance corresponds to p = 2 deteriorates drastically when the
noise gets more impulsive. Meanwhile, using an appropriately
smaller value of p can yield significantly better performance,
especially in the more impulsive condition with α = 0.5.

From the results across Figs. 2 to 4, selecting a value p < 1
in the interval [0 0.8] is recommended. Such a choice has the
potential to yield distinctly more accurate recovery than p ≥ 1
in highly impulsive noise. Even in the conditions with slightly
or non-impulsive noise, e.g., white Gaussian noise, it does not
lead to significant performance loss compared with p = 2.
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Fig. 5. Recovery performance versus CS factor m/n for the compared
algorithms in Gaussian mixture noise with ξ = 0.1, κ = 1000, SNR = 30 dB.

B. Comparison With Existing Methods

In the second group of experiments, we compare the pro-
posed algorithm with the Homotopy, Lq-min, Huber-FISTA,
BP-JP, BP-SEP, and YALL1 algorithms. Figs. 5 and 6 show the
performance of the compared algorithms versus CS factor m/n
respectively for the two noise conditions: Gaussian mixture
noise with ξ = 0.1, κ = 1000, and SNR = 30 dB, and SαS
noise with α = 0.5 and γ = 1 × 10−3 . We set K = 30 and
n = 512. Four typical values of p, p ∈ {0.2, 0.5, 0.8, 1.2}, are
examined for the new algorithm.

It can be seen from Figs. 5 and 6 that, Huber-FISTA, YALL1
and Lp-ADM distinctly outperform Homotopy when m/n >
0.25 in the case of Gaussian mixture noise or when m/n > 0.1
in the case of SαS noise. As the CS factor increases, the recovery
accuracy of each robust algorithm improves significantly in both
conditions, but that of Homotopy does not improve distinctly in
the SαS noise condition. This is due to the fact that the consid-
ered SαS noise is highly impulsive, and the �2-norm loss func-
tion is very sensitive to extremely large outliers. When m/n >
0.3 in the case of Gaussian mixture noise or when m/n > 0.25
in the case of SαS noise, Lp-ADM with p < 1 achieves better
performance than Huber-FISTA and YALL1. That advantage is
more significant in the more impulsive case of SαS noise.

In Gaussian mixture noise, Lq-min has better performance
than the other algorithms when m/n is relatively small, which
is due to the fact that �q -regularized methods require fewer mea-
surements to achieve reliable reconstruction than �1-regularized
methods. However, Lq-min breaks down in the case of α-stable
noise. BP-JP is outperformed by YALL1 and Lp-ADM with p <
1 in most cases. It is reasonable since BP-JP in fact solves the �1-
�1 problem (4) with μ = 1 and thus is a special case of YALL1.
Since YALL1 often attains the best performance at a value μ �=
1, it outperforms BP-JP in most cases. Moreover, BP-SEP per-
forms comparably as BP-JP in the considered conditions.

Next, we consider a practical condition that the measure-
ments are contaminated by bit errors like corruption, which
causes potentially unbounded errors in the measurements.

Fig. 6. Recovery performance versus CS factor m/n for the compared
algorithms in SαS noise with α = 0.5 and γ = 1 × 10−3 .

Such arbitrary large error can model the corruption caused by
bit errors in transmission, malfunctioning pixels, and faulty
memory locations. The test signal with length 256 has 15
non-zero values. The measurement matrix is a 100 × 256 or-
thonormal Gaussian random matrix. 10% of the measurements
are randomly set to be ±1000, which models the arbitrary
unbounded errors. Moreover, zero-mean Gaussian noise with
variance 10−4 is added to model small background noise.

In this condition, both Homotopy and Lq-min break down.
Fig. 7 shows the recovery performance of the compared robust
algorithms, including the recovered signal and the correspond-
ing relative error of recovery (RelErr) for each algorithm. It can
be seen that, each robust algorithm achieves a RelErr less than
20%. Moreover, Lp-ADM with p ∈ {0.5, 0.8} significantly
outperforms BP-JP, YALL1 and Huber-FISTA. In the two cases
with p ∈ {0.5, 0.8}, the RelErr of Lp-ADM are approximately
64%, 52%, and 29% that of YALL1, Huber-FISTA, and BP-JP,
respectively.

On the whole, Huber-FISTA is more robust than Homotopy
but less robust than YALL1. That is due the nature that
Huber function fitting lies in between the least-squares and
least-absolute-deviations. Along with the results in [27] that the
least-absolute based algorithm gives the best performance com-
pared with the Lorentzian-BP [20], Huber-FISTA and its several
variants, Lp-ADM with p < 1 can achieve state-of-the-art
robust performance in highly impulsive noise.

Finally, we compare the computational complexity of
the robust algorithms. For BP-JP and BP-SEP solved via
ADM, the dominant computational load in each iteration
is matrix-vector multiplication (involving an m × (m + n)
matrix) with complexity O(mn + m2), which is the same
as that of YALL1. When the x-subproblem of Lp-ADM is
solved by (21) (e.g., for p ≥ 1), Lp-ADM costs O(mn) flops
in each iteration, which is the same as that of Huber-FISTA.
Lp-ADM with the x-subproblem updated via (24) requires the
inversion of n × n matrices. Using matrix inversion lemma and
Cholesky decomposition, we only need to factor an m × m
matrix once and can use cheaper back-solve in computing the
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Fig. 7. Recovery performance of the compared algorithms in the presence of bit errors like corruption. (a) Test signal. (b) Measurements without noise.
(c) Corrupted measurements. (d) Huber-FISTA, RelErr = 0.110. (e) YALL1, RelErr = 0.090. (f) BP-JP, RelErr = 0.197. (g) Lp-ADM (p = 0.5), RelErr = 0.058.
(h) Lp-ADM (p = 0.8), RelErr = 0.057.

inverse based updates [48]. In such a manner, Lp-ADM cost
O(m2n) flops in the first iteration and O(mn) flops in each of
the subsequent iterations. As discussed in Section VI-B, when
A is orthonormal, the inversion in (24) can be avoided. For the
setting in the last experiment and on a desktop PC with an Intel
Core i5-4670 CPU at 3.4 GHz with 8 GB RAM, the average
runtime of YALL1 and Huber-FISTA are approximately 0.6 and
0.4 seconds, respectively, while that of Lp-ADM for different
p < 1 ranges from 2.6 to more than three seconds.

VII. CONCLUSION

This work introduced a robust formulation for sparse recov-
ery, which employs the �p -norm with 0 ≤ p < 2 as the metric
for the residual error. An efficient algorithm has been proposed
to solve this formulation via incorporating the generalized
proximity operator for �p -norm functions into the framework
of augmented Lagrangian methods. In such a manner, both the
convex (p ≥ 1) and nonconvex (p < 1) cases of the introduced
formulation have been casted into a unified framework. More-
over, we have analyzed the convergence condition of the new
algorithm for both the convex and nonconvex cases. Simulation
results showed that, in the presence of highly impulsive
measurement noise, the new algorithm with an appropriate
choice of p (p < 1) has the capability to achieve distinctly better
recovery accuracy compared with existing robust algorithms.

APPENDIX A
PROOF OF THEOREM 1

The derivation of (9) is similar to that of (8) in [5], [41].
Briefly, since x̂ is a feasible point of the optimization problem
(6) and the noise obeys ‖n‖p ≤ ε, it yields ‖Ax̂ − y‖p ≤ ε
and ‖Ax − y‖p ≤ ε. Then, let h = x̂ − x, we have

‖Ah‖2 ≤ ‖Ax̂ − y‖2 + ‖Ax − y‖2

≤ ‖Ax̂ − y‖p + ‖Ax − y‖p

≤ 2ε (30)

where the second inequality follows from that ‖z‖2 ≤ ‖z‖p

holds for arbitrary z ∈ Rm if 0 < p ≤ 2. It has been shown in

[41] that

‖h‖2 ≤
√

2 + 2δ2s‖Ah‖2

1 − δ2s −
√

2δ2s

(31)

holds if δ2s <
√

2 − 1. Consequently, plugging (30) into (31)
yields (9) with Cs = 2

√
2 + 2δ2s(1 − δ2s −

√
2δ2s)−1 .

APPENDIX B
THE DERIVATION OF (16)

Since h2(0) < 0 when ti �= 0, z0 = 0 is a lower bound for
the solution. However, we cannot use a starting point z0 = 0
since h′

2(z) → ∞ as z → 0. In the following, we find a positive
lower bound for the solution.

Since h2(z) is a monotonously increasing function of z > 0,
the solution of h2(z) = 0, denoted by z0 , satisfies that

{
0 < z0 < 1, if h2(1) > 0
z0 ≥ 1, if h2(1) ≤ 0

. (32)

Further, for 1 < p < 2, it is easy to observe that
{

pazp−1
0 + ηzp−1

0 − η|ti | > 0, if 0 < z0 < 1
paz0 + ηz0 − η|ti | ≥ 0, if z0 ≥ 1

. (33)

Then, it follows from (32) and (33) that
{

[η|ti |/(pa + η)]1/(p−1) < z0 < 1, if h2(1) > 0
1 ≤ η|ti |/(pa + η) ≤ z0 , if h2(1) ≤ 0

which finally results in (16).

APPENDIX C
PROOF OF THEOREM 2

Let (v∗,x∗) be any solution of (17), accordingly, there exists
w∗ ∈ Rm such that the following optimality conditions are
satisfied

1
μ
∇‖v∗‖p

p = −w∗, AT w∗ ∈ ∂‖x∗‖1 , and Ax∗ − y = v∗.



WEN et al.: ROBUST SPARSE RECOVERY IN IMPULSIVE NOISE VIA �p -�1 OPTIMIZATION 115

For x = xk and w = wk fixed, the minimizer vk+1 of (18)
satisfies

1
μ
∇‖vk+1‖p

p − ρ(Axk − y − vk+1 − wk/ρ) = 0. (34)

Plugging (20) into (34) yields

1
μ
∇‖vk+1‖p

p + wk+1 − ρA(xk − xk+1) = 0. (35)

Then, it follows from (35) and 1
μ ∇‖v∗‖p

p = −w∗ that

w∗ − wk+1 + ρA(xk − xk+1) =
1
μ

(∇‖vk+1‖p
p −∇‖v∗‖p

p)

which further results in

(v∗ − vk+1)T (wk+1 − w∗ − ρA(xk − xk+1))

=
1
μ

(vk+1 − v∗)T
(
∇‖vk+1‖p

p −∇‖v∗‖p
p

)

≥ 0. (36)

The inequality in (36) is due to the convexity of ‖·‖p
p , which

holds for arbitrary p ≥ 1. Inequation (36) is just the inequation
(A.2) in [23, Theorem 2.1], and the rest of the proof follows
similarly the proof of Theorem 2.1 in [23], which is omitted
here for succinctness.

APPENDIX D
PROOF OF THEOREM 3

We first prove the following lemmas in the proof of
Theorem 3.

Lemma 1: Let h(x) = ρ
2 ‖Ax − y − vk+1 − 1

ρ w
k‖2

2 . For

any L2 > 1
2ε and xk ∈ Rn , the minimizer xk+1 given by (24)

satisfies

‖xk+1‖1,ε + h(xk+1)

≤ ‖xk‖1,ε + h(xk ) −
(
L2 −

1
2ε

)
‖xk+1 − xk‖2

2 .

Lemma 2: Suppose that ε > 0, L2 > 1
2ε , AAT 
 μAIm

with some μA > 0 and (29) holds, then

L̂(vk ,xk ,wk ,xk−1) ≥ L̂(vk+1 ,xk+1 ,wk+1 ,xk )

+ c1‖xk+1 − xk‖2
2

where L̂(v,x,w, x̂) := Lρ,ε(v,x,w) + c0‖x − x̂‖2
2 with

c0 , c1 > 0 are given by

c0 =
2(L2 + 1

ε )2

ρμA
, c1 = L2 −

1
2ε

−
2L2

2 + 2(L2 + 1
ε )2

ρμA
.

Lemma 3: Let zk := (vk ,xk ,wk ). Suppose that ε > 0,
L2 > 1

2ε , AAT 
 μAIm with some μA > 0 and (29) holds,
then

lim
k→∞

‖zk+1 − zk‖2
2 = 0.

Moreover, any cluster point of zk is a stationary point of Lρ,ε .

Proof of Lemma 1: First, the Hessian of ‖x‖1,ε is

∇2‖x‖1,ε = ε2diag{(x2
1+ε2)−

3
2 , . . . , (x2

N +ε2)−
3
2 } � 1

ε
In

(37)
which implies that the gradient of ‖x‖1,ε is 1

ε -Lipschitz
continuous, thus, for any xk ,xk+1 ∈ Rn we have

‖xk+1‖1,ε ≤ ‖xk‖1,ε + 〈xk+1 − xk ,∇‖xk‖1,ε〉

+
1
2ε

‖xk+1 − xk‖2
2 . (38)

Moreover, the x-subproblem actually minimizes the following
approximate objective

Qxk (x) = 〈x−xk ,∇‖xk‖1,ε〉+
L2

2
‖x−xk‖2

2 + h(x). (39)

Since Qxk (x) is L2-strongly convex, for any xk ∈ Rn we have

Qxk (xk ) ≥ Qxk (xk+1) + 〈xk − xk+1 ,∇Qxk (xk+1)〉

+
L2

2
‖xk − xk+1‖2

2 . (40)

From the definition of xk+1 as a minimizer of Qxk (x), we have
∇Qxk (xk+1) = 0. Further, with Qxk (xk ) = h(xk ), it follows
from (39) and (40) that

〈xk+1−xk ,∇‖xk‖1,ε〉+h(xk+1) ≤ h(xk )−L2‖xk+1−xk‖2
2

which together with (38) results in Lemma 1.
Proof of Lemma 2: First, we show that the changes in the dual

iterates can be bounded by the changes in the primal iterates

‖wk+1 − wk‖2
2 ≤ 2L2

2

μA
‖xk+1 − xk‖2

2

+
2(L2 + 1

ε )2

μA
‖xk − xk−1‖2

2 . (41)

Observe that the approximate x-subproblem actually minimizes
Qxk (x) in (40), whose minimizer xk+1 satisfies

0 = ∇‖xk‖1,ε + L2(xk+1 − xk )

+ ρAT (Axk+1 − y − vk+1 − wk/ρ). (42)

Plugging (20) into (42) yields

AT wk+1 = ∇‖xk‖1,ε + L2(xk+1 − xk ). (43)

Then, it follows that

‖AT (wk+1 − wk )‖2
2

≤
(∥∥∇‖xk‖1,ε −∇‖xk−1‖1,ε

∥∥
2 + L2‖xk+1 − xk‖2

+ L2‖xk − xk−1‖2
)2

≤
(1

ε
‖xk−xk−1‖2 + L2‖xk+1−xk‖2 + L2‖xk −xk−1‖2

)2

≤ 2L2
2‖xk+1 − xk‖2

2 + 2
(
L2 +

1
ε

)2
‖xk − xk−1‖2

2 (44)

where the second inequality follows from (37) that ∇‖x‖1,ε

is 1
ε -Lipschitz continuous. Further, since AAT 
 μAIm for
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some μA > 0, we have∥∥AT (wk+1 − wk )
∥∥2

2 ≥ μA

∥∥wk+1 − wk
∥∥2

2

which together with (44) results in (41).
From (20) and the definition of Lρ,ε , we have

Lρ,ε(vk+1 ,xk+1 ,wk+1) − Lρ,ε(vk+1 ,xk+1 ,wk )

=
1
ρ
‖wk+1 − wk‖2

2 . (45)

Moreover, it follows from Lemma 1 that

Lρ,ε(vk+1 ,xk+1 ,wk ) − Lρ,ε(vk+1 ,xk ,wk )

≤ −
(
L2 −

1
2ε

)
‖xk+1 − xk‖2

2 . (46)

Further, from the definition of vk+1 as a minimizer, we have

Lρ,ε(vk+1 ,xk ,wk ) − Lρ,ε(vk ,xk ,wk ) ≤ 0. (47)

Summing (45), (46) and (47), and using (41) we obtain that

Lρ,ε(vk+1 ,xk+1 ,wk+1) − Lρ,ε(vk ,xk ,wk )

≤
( 2L2

2

ρμA
− L2 +

1
2ε

)
‖xk+1 − xk‖2

2

+
2(L2 + 1

ε )2

ρμA
‖xk − xk−1‖2

2

which consequently results in Lemma 2, where c1 is guaranteed
to be positive if

ρ >
2L2

2 + 2(L2 + 1
ε )2

μA (L2 − 1
2ε )

.

Proof of Lemma 3: First, we show that the sequence {zk} is
bounded if μA > 0. From (43), we see that

μA‖wk‖2
2 ≤ ‖AT wk‖2

2

≤
(∥∥∇‖xk−1‖1,ε

∥∥
2 + L2‖xk − xk−1‖2

)2

≤ 2
∥∥∇‖xk−1‖1,ε

∥∥2
2 + 2L2

2‖xk − xk−1‖2
2

≤ 2n + 2L2
2‖xk − xk−1‖2

2 (48)

where the last inequality follows from
∥∥∇‖xk‖1,ε

∥∥2
2 ≤ n. De-

fine ẑk := (vk ,xk ,wk ,xk−1), since L̂(ẑk ) is lower semicontin-
uous, it is bounded from below. Further, by Lemma 2, L̂(ẑk ) is
nonincreasing when the condition (29) is satisfied, then, we have

L̂(ẑ1) ≥ L̂(ẑk )

=
1
μ
‖vk‖p

p + ‖xk‖1,ε +
ρ

2
‖Axk − y − vk+1 − wk/ρ‖2

2

− 1
2ρ

‖wk‖2
2 + c0‖xk − xk−1‖2

2

≥ 1
μ
‖vk‖p

p + ‖xk‖1,ε +
ρ

2
‖Axk − y − vk+1 − wk/ρ‖2

2

− n

ρμA
+

2(L2 + 1
ε )2 − L2

2

ρμA
‖xk − xk−1‖2

2

where the last inequality follows from (48). Since ‖vk‖p
p and

‖xk‖1,ε are coercive and by (48), it is easy to see that vk , xk

and wk are bounded.
Since ẑk is bounded, there exists a convergent subsequence

ẑkj which converges to a cluster point ẑ∗. Moreover, L̂(ẑk ) is
convergent and L̂(ẑk ) ≥ L̂(ẑ∗) for any k if c1 > 0. Then, it
follows from Lemma 2 that

c1

N∑
k=1

∥∥xk+1 − xk
∥∥2

2 ≤
N∑

k=1

L̂(ẑk ) − L̂(ẑk+1)

= L̂(ẑ1) − L̂(ẑk+1)

≤ L̂(ẑ1) − L̂(ẑ∗) < ∞.

With N → ∞, we have
∑∞

k=1 ‖xk+1 − xk‖2
2 < ∞, which

together with (41) implies
∑∞

k=1 ‖wk+1 − wk‖2
2 < ∞.

Moreover, it follows from (20) that

‖vk+1 − vk‖2 ≤ ‖A(xk+1 − xk )‖2 +
1
ρ
‖wk+1 − wk‖2

+
1
ρ
‖wk − wk−1‖2 .

Thus, we have
∑∞

k=1 ‖vk+1 − vk‖2
2 < ∞. In particular∑∞

k=1 ‖zk+1 − zk‖2
2 < ∞ and lim

k→∞
‖zk+1 − zk‖2

2 = 0.

Finally, we show that any cluster point of {zk} is a stationary
point. From the optimality conditions and the definition of
wk+1 , the iterates satisfy⎧⎪⎪⎨

⎪⎪⎩

0 ∈ 1
μ ∂‖vk+1‖p

p + wk+1 + ρA(xk+1 − xk )

0 = ∇‖xk‖1,ε + L2(xk+1 − xk ) − AT wk+1

wk+1 = wk − ρ(Axk+1 − y − vk+1)

. (49)

For a convergent subsequence zkj , since ‖zk+1 − zk‖2 → 0
as k → ∞, zkj and zkj +1 have the same limit point
z∗ := (v∗,x∗,w∗). Moreover, since L̂(ẑk ) is convergent,
‖vk‖p

p is also convergent. Then, passing to the limit in (49)
along the subsequence zkj yields

−w∗ ∈ 1
μ

∂‖v∗‖p
p , AT w∗ = ∇‖x∗‖1,ε , Ax∗ − y = v∗.

In particular, z∗ is a stationary point of Lρ,ε .
Proof of Theorem 3: Based on the above lemmas, the proof

of Theorem 3 mainly consists of the following two steps:
i) There exists c2 > 0 such that

dist(0, ∂L̂(ẑk+1))

≤c2
(
‖xk+1 − xk‖2 +‖xk − xk−1‖2 +‖xk−1−xk−2‖2

)
which together with Lemma 3 implies that
dist(0, ∂L̂(ẑk+1)) → 0 as k → ∞.

ii) Let zk := (vk ,xk ,wk ), the generated sequence {zk}
has finite length, i.e.,

∞∑
k=0

‖zk+1 − zk‖2 < ∞

which implies that {zk} is a Cauchy sequence and thus
is convergent.
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The property (ii) together with Lemma 3 completes the
proof. The derivation of property (ii) relies heavily on the
Kurdyka-Lojasiewicz (KL) property of L̂, which holds if p
is rational since ‖ · ‖p is semi-algebraic (thus a KL function)
in this case. With the above lemmas, the proof of (i) and (ii)
follows similarly the proof of Theorem III.3 and Theorem III.4
in [53] with some minor changes, thus is omitted here for
succinctness.
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