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Abstract-In this paper, we propose a statistical model-based 

speech enhancement algorithm using an improved minima con­

trolled recursive averaging (IMCRA) noise estimation and a de­

cision-directed (DD) priori SNR estimation. In the training stage, 

the Gaussian mixture model (GMM) of the Mel-frequency 

cepstral coefficients (MFCCs) of universal speaker is obtained. In 

speech enhancement stage, minima tracking process of IMCRA 

noise estimation is adjusted with the noisy power spectrum of 

current frame and an adjustment weighting factor. In addition, 

based on the universal GMM, some significant constant parame­

ters are replaced by frequency-varying parameters, such as the 

weighting parameter in the DD priori SNR estimation and the 

adjustment weighting factor in the modified minima tracking 

process of IMCRA. The performance of proposed speech en­

hancement is evaluated by objective tests under various station­

ary and non-stationary noise environments. From experimental 

results, compared to the conventional approaches, the proposed 

scheme performs better and is suitable for being used as the 

pre-processing of speech processing systems. 
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I. INTRODUCTION 

As a fundamental part of speech processing system, speech 
enhancement is a necessary pre-processing for background 
noise reduction. Various approaches for speech enhancement 
of noisy speech signals have been introduced and applied in 
recent 30 years. Many speech enhancement algorithms [1]-[10] 
operate in frequency domain and are usually composed of 
noise power estimation and speech estimation. The speech is 
estimated by multiplying the noisy speech magnitude spectrum 
by a gain function, which is on the basis of the estimated noise, 
the statistical model of speech and certain distortion criterion. 

The noise power estimation is a crucial and difficult com­
ponent in speech enhancement systems. As one of the efficient 
noise power estimation techniques, minimum statistics (MS) [1] 
obtains the noise power estimate by searching the minima val­
ues of a smoothed power estimate of the noisy signal within a 
finite window. To improve the accuracy of estimate during 
speech absence periods, MS is combined with the well-known 
soft decision scheme based on the speech absence probability 
(SAP) in [2]. However, only the smoothing of noisy power 
spectrum in time is taken into account in MS and there is a 
strong correlation of speech presence in neighboring frequency 
bins of the consecutive frames. Therefore, the improved mini­
ma controlled recursive averaging (IMCRA) technique [3] 
makes use of the smoothing in both time and frequency, which 
comprises two iterations of smoothing and minima tracking. 
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In most speech estimators, the estimated speech spectrum is 
obtained by multiplying the noisy spectrum by a gain function. 
The distribution of both the noisy speech and noise spectrum is 
assumed to follow one statistical model, including Gaussian 
and Laplacian. For weighting the spectral, several best known 
fidelity criteria are presented, such as the minimum mean­
squared error (MMSE) [4], MMSE of the log-spectral ampli­
tude (MMSE-LSA) [5][6] and the Wiener filter [7]. To further 
enhance these speech estimators, the gain function is then 
modified according to SAP [8]. 

Both the gain function and SAP are computed from a priori 
signal-to-noise ratio (SNR) and a posteriori SNR. The deci­
sion-directed (DD) approach [9] derived by Ephraim and Ma­
lah is widely used for estimating a priori SNR. A weighting 
factor, which is a fixed weight for the current short-time frame 
and the processing output of previous frames, is applied to 
control the tradeoff between noise reduction and transient dis­
tortion. In addition, there are some modifications, including an 
adaptive weighting factor determined by the deviation of the 
posteriori SNR [10] and a modified DD priori SNR estimator 
in [11] to reduce the degradation of speech quality caused by 
one-frame delay in traditional DD approach. 

Moreover, some algorithms [12][13] improve the enhanced 
speech quality based on the off-line or on-line knowledge of 
noise type. Some parameters, such as the searching window 
size of MS [12], the weighting factor in DD approach [13], and 
the control parameter of minimum gain value [13], are variable 
according to the determined noise type. 

In this paper, we propose a novel speech enhancement 
based on a universal GMM of speakers' MFCCs. The widely 
used IMCRA noise estimation and DD a priori SNR estimation 
are modified according to the feature of different frequency 
bins. For the IMCRA noise estimation, the noisy power spec­
trum of current frame is added to the tracked minima value of 
smoothed noisy power spectrum with adjustment weighting 
factors and a higher-bound limitation. The weighting factors of 
both this minimum noise power spectrum tracking and DD a 
priori SNR estimator are variable for different frequency bins 
according to the universal GMM. 

The rest of this paper is organized as follows. In section II, 
we briefly introduce the IMCRA estimation and DD a priori 
SNR estimation. The training of universal GMM and the pro­
posed modifications of IMCRA and DD are explained in sec­
tion III. Section IV presents the experimental results, and fi­
nally, the conclusions are drawn in Section V. 



Clean speech Train a universal 
speaker model 

Figure 1. Overall block diagram of speech enhancement algorihtm based on 
a universal speaker model 

II. REVIEW OF PREVIOUS SPEECH ENHANCEMENT 

In this section, we briefly introduce the IMCRA noise esti­
mation and decision-directed a priori SNR estimation. Consid­
ering only the additive noise, the observed noisy signal y(n) is 
assumed as: 

y(n)=x(n)+d(n) 
(1) 

where x(n) and d(n) denote clean speech and uncorrelated addi­
tive noise signals. After applying the short-time Fourier trans­
form (SFT), the noisy signal is transformed into Ytk. 
A. IMCRA noise power estimation 

There are two iterations of smoothing and minima tracking 
in IMCRA noise estimation. In the fIrst iteration, a rough voice 
activity detection is provided. The noisy power spectrum is 
smoothed in frequency and time successively: 

�k= I:�_w biIYt,k-l (2) 

Stk=asSt-l,k+(1-aJ�k (3) 

where b denotes a normalized window function of length 2w+ 1 
and as is a smoothing factor. The same as MS method, the 
minima of Stk are picked within a [mite window of length D. 

(4) 

Based on above smoothing and minima tracking result, a 
rough decision about speech presence or absence is given by 

I = { 1' ify;%ln<yo and �k «0 (speech absence) 
tk 0, if otherwise (speech presence) (5) 

Based on the bias factor Bnllm �%in and �k are defIned by 

If 12 S mm .. 
tk (''' tk 

Ytk = B . S',nm ' tk= B . S',lIIn mm tk mm tk (6,7) 

Then, in the second iteration, only the components identi­
fIed as containing noise are smoothed as follows: 
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{"W_ b 1 If 12 IW L.../--w / t,k-I t,k-I if 1 -1-0 
.,J "W b 1 I t,k-rt--Stk= L..., �-w I t,k-I I�-W 

�_I k' otherwise (8) 

After smoothing in frequency, smoothing in time and 
minima tracking are performed the same as the fIrst iteration. 

Under speech presence uncertainty, noise power is esti­
mated with conditional speech presence probability. 

(9) 

(10) 

where the smoothing factor Cxtk is adjusted by the speech 
presence probability Ptk' which is estimated by the tracked 

minimum value of smoothed noise power spectrum !ik' 
E. Decision-directed a priori SNR estimation 

The decision-directed approach, derived by Ephraim and 
Malah [9], provides a very useful estimation method for a pri­
ori SNR. When speech presence is assumed, the expression is 
simplifIed as: 

where C(x)=x if x�O, and C(x)=O otherwise. �-I,kIHI is the 

estimated clean speech of previous frame and (j�1,k is the 

noise power spectrum of previous frame. The weighting factor 

a,; controls the trade-off between the noise reduction and tran­

sient signal distortion. 

III. MODIFIED IMCRA NOISE ESTIMATION AND DD A PRIORI 

SNR ESTIMATION APPROACH 

We propose modifIcations of IMCRA noise estimation and 
DD a priori SNR estimation. As described in section II, con­
stant weighting parameters are utilized to control the tradeoff 
between noise reduction and signal distortion. Since the pres­
ence probability for different frequency bins are inconsistent, 
we can modify these parameters according to a universal model 
of speakers, which can also reduce the complexity increase 
caused by speaker recognition. In addition, the minima tracking 
process of IMCRA is also modifIed to get a more accurate es­
timated noise power spectrum. The overall process is shown in 
Figure 1, which composes of an offline training stage and a 
speech enhancement stage. 

A. Featrue extraction and universal GMM training 

The training stage contains three steps, including speech 
feature extraction, universal GMM training, and domain trans­
formation. To extract feature, the Mel-frequency cepstral coef­
fIcients (MFCCs) of clean speech are calculated, which are 
widely used for speech and speaker recognitions. 

After that, a universal Gaussian mixture model of extracted 
MFCCs is trained. The GMM is described as: 

(12) 



DCT-1 
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---., J1.mag 

Figure 2. The operations needed to transform a Mel-frequency-cepstral 
domain vector to frequency domain 
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(b) weighting factor in DD a priori SNR estimation 

Figure 3. Frequency-varying weighitng parameters: (a) the adjustment 
weighting factor in the first iteration of IMCRA noise estimation, and (b) the 

weighting parameter in DD a priori SNR estimation. 

where M is the number of mixture, w, is mixture weight, 11, 
is mean vector and 2:, is covariance matrix. 

The obtained universal GMM is in Mel-frequency domain, 
while most speech enhancement algorithms are processed in 
frequency domain. Therefore, the mean vector of GMM should 
be transformed to frequency domain according to the operating 
process shown in Figure 2. After domain transformation, the 
mixture weights Wi and the mean vectors 11, are combined as 

a mixture as below, which is utilized as feature of universal 
speakers in the following speech enhancement stage. 

I1sp= "\,,
M wPi Li�1 

B. Modified minima tracking process of IMCRA 

(13) 

IMCRA noise estimation contains two iterations of 
smoothing and minima tracking, as described in section II. In 
each iteration, after smoothing the power spectrum, the minima 
are tracked within a fmite window length D. A larger window 
length is desirable to detennine the minimum power in the case 
of stationary noises for stability [4], while a shorter window 
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TABLE I. VALUES OF THE PARAMETERS OF ADJUSTMENT WEIGHTING 
FACTOR USED IN MODIFIED IMCRA, FOR A SAMPLING RATE OF 8 KHz 

Iterations Parameters 
a b c d 

Iteration 1 - 0.02 2 13 0.97 
Iteration 2 Hl�k 0.02 2 13 0.96 

Hltk 0.02 2 13 0.98 

length is able to reduce the variance of the minima and shorten 
the delay when responding to a rising noise power [3]. There­
fore, in the case of a fixed window length, in order to improve 
the tracking capability of noise estimator, the minima tracking 
process is adjusted with the noisy power spectrum of current 
frame and an adjustment weighting factor. 

For the first iteration, the modified minima tracking process 
is shown in equation (14). 

S',"1n .!!aSmin. min{S It-D+ l<r<t}+(l_aSmm) 1 y 12 tk - k rk - - k tk (14) 

where a�min is a frequency-varying adjustment weighting fac­
tor according to speakers' universal GMM. 

In order to adjust the minima tracking process accurately, it 

is obvious that the adjustment weighting factor a�min should 
be larger for the case of speech presence, and be smaller on the 
contrary case. Thus, on the basis of this relationship, the ad­
justment weighting factor is defmed as follows, using a flexible 
sigmoid-shape function. 

(15) 

(16) 

where a, b, c and d are parameters that control the slope and the 
mean of a weighting factor. The parameter 11k is modified 

mean vector of speakers' universal GMM. As an example, the 
adjustment weighting factor is shown in Figure 3(a). 

In addition, a higher-bound constraint s,;;'!:x is added to 

further reduce the excessive regulation of S:'J/n, as below. 

S',"1n =min{S',l1in S',"m } lk lk' maxlk (17) 

(18) 

where T is a constant parameter of 1.1, and D
M 

is a fmite 
search window length of 12. 

In the second iteration, hypotheses of smoothed signal ab­
sence is defined based on the rough decision Ilk of the first 

iteration. Otherwise it is the case of speech presence Hit 

Hi/): I:�.}.k.i*O (19) 

Considering the differences between speech presence and ab­

sence, the parameter d of the adjustment weighting factor af"m 
under HIt is smaller than the case of Hit So the detailed 
parameters for a sampling rate of 8 kHz are presented in Table 
I. Higher-bound constraint is identical with the first iteration. 
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(c) Estimated noise power spectrum 
Figure 4. Minima of smoothed noisy power spectrum and estimated noise 

power spectrum: (a) (b) the picked minima of noisy power using conventional 
(blue) and modified (red) IMCRA in the first and second iteration respectively, 

and (c) estimated by IMCRA (blue and red) and exact (green) noise power 
spectrum 

The performance of conventional and modified IMCRA 
minima tracking processes is illustrated in the example of Fig­
ure 4. The noisy speech sequence is taken from NOIZEUS 
database with airport noise and SNR = OdB. From the present­
ed results, modified IMCRA noise estimator has better tracking 
capability, especially for a rising noise power case. 

C. Modified priori SNR estimation 

As a modification of decision-directed approach, a causal 
conditional estimator of priori SNR is presented in [14], which 
contains a "propagation" step and an "update" step. A special 
case of this causal recursive estimator degenerates to a DD 
estimator with a time-varying frequency-dependent weighting 
factor atk as follows: 

I 1X;_I,kIHI12 I t;lkll=max a1k �2 +(J-a1k)C(y1k-J),t;min (20) (Jl-I,k 
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ak=l- IXt-l,kIHl 
I (o-�I,k+IX;_I'kIHl)

2 (21) 

A larger weighting factor in DD estimator is to reduce mu­
sical noise phenomena during speech absence, while a smaller 
weighting factor is to reduce signal distortion during speech 
presence. So the above variable weighting factor helps reduc­
ing the level of musical noise without much audible distortion. 
But for some transients, the performance is not so ideal. 
Therefore, we consider a more generally suitable case based on 
the universal speaker's feature in this paper. 

The estimated noise power spectrum of previous frame 

o-�I k in (25) is replaced by a related constant. Instead of the 

estimated output spectrum X;-I,kIHl' frequency-domain mean 

vector of speakers' universal GMM is utilized. So time-varying 
frequency-dependent weighting factor atk is simplified to a 
frequency-dependent weighting factor as below: 

(22) 

where a is the constant estimate of noise power spectrum and b 
is a constant offset to weighting factor. For a sampling rate of 8 
kHz case, a is set to 3.2 and b is set to 0.03. The frequen­
cy-varying weighting parameter is shown in Figure 4(b). 

IV. EXPERIMENTAL RESULTS 

The performance of speech enhancement based on the pro­
posed modification of IMCRA noise estimation and DD a pri­
ori SNR estimation is demonstrated in this section. To evaluate 
the performance, the widely used optimal modified minimum 
mean-square error log-spectral amplitude (OMLSA) in [6] is 
chosen as speech estimation, which combines the MMSE-LSA 
gain function with the probability of speech presence. 

The test speeches are taken from TIMIT and NOIZEUS 
database. Clean speeches used in this experiment are taken 
from TIMIT database, including 258 male and female speakers 
from 4 dialect regions. The clean speech signal is sampled at 8 
kHz and degraded by seven stationary or non-stationary noises 
at SNRs of -5, 0, 5 and 10 dB, including airport, babble, car, 
exhibition, station, street and train from the NOIZEUS data­
base. For each speaker, only one clean speech is used for train­
ing the speakers' universal GMM and other two noisy speeches 
are for testing. In the training stage, the number of components 
densities M in GMM is set to 16. The number of Mel-filters 
and Mel-cepstral coefficients is 24. 

The performance is evaluated by three objective quality 
measures of the global SNR in dB, the perceptual evaluation of 
speech quality (PESQ) in the ITU-T P.862 and a composite 
measure for the overall quality, expressed by Covl [15]. 

Covl= 1. 594+0. 805·SPESQ-0. 512·SLLR-0. 007·Swss (23) 

where SPESQ' SLLR and Swss respectively represent PESQ, 

the log-likelihood ratio (LLR), and the weighted- slope spectral 
(WSS) distance, which are defined in [15]. 



TABLE II. PESQ RESULTS OBTAINED FROM THE CONVENTIONAL AND 
MODIFIED METHODS. (1M-OM IS SHORT FOR IMCRA-OMLSA AND MODIFIED 

IS THE PROPOSED MODIFICATION OF IMCRA AND �O) 

Noise type Method Input SNR 
OdB 5 dB 10 dB 15 dB 

Airport 
1M-OM 1.91 2.29 2.65 3.03 
Modified 1.95 2.31 2.66 3.04 

Babble 
1M-OM 1.85 2.25 2.61 2.95 
Modified 1.88 2.26 2.61 2.96 

Car 
1M-OM 1.98 2.40 2.74 3.07 
Modified 2.03 2.44 2.78 3.11 

Exhibition 
1M-OM 1.73 2.20 2.56 2.92 
Modified 1.78 2.23 2.58 2.94 

Station 
1M-OM 1.90 2.40 2.69 3.03 
Modified 1.95 2.43 2.72 3.05 

Street 
1M-OM 1.83 2.23 2.58 2.92 
Modified 1.89 2.27 2.61 2.95 

Train 
1M-OM 1.75 2.17 2.53 2.89 
Modified 1.78 2.20 2.56 2.91 

TABLE III. GLOBAL SNR RESULTS COMPARISON. 

Noise type Method Input SNR 
OdB 5 dB 10 dB 15 dB 

Airport 
1M-OM 3.66 7.92 12.37 16.94 
Modified 3.69 7.94 12.47 17.17 

Babble 
1M-OM 3.86 8.15 12.49 16.79 
Modified 3.70 8.07 12.52 16.91 

Car 
1M-OM 5.80 9.57 13.32 17.41 
Modified 6.15 9.95 13.78 17.87 

Exhibition 
1M-OM 4.45 8.52 12.65 17.02 
Modified 4.50 8.60 12.82 17.29 

Station 
1M-OM 4.42 8.75 12.81 16.85 
Modified 4.65 8.95 13.06 17.16 

Street 
1M-OM 4.38 8.52 12.43 16.82 
Modified 4.56 8.74 12.68 17.08 

Train 
1M-OM 4.62 9.17 13.25 17.46 
Modified 4.67 9.26 13.44 17.65 

TABLE IV. COMPOSITE MEASURE (CovzJ RESULTS COMPARISON. 

Noise type Method Input SNR 
o dB 5dB 10dB 15 dB 

Airport 
IM-OM 2.01 2.53 3.06 3.54 
Modified 2.03 2.53 3.07 3.55 

Babble 
IM-OM 1.87 2.46 2.99 3.44 
Modified 1.87 2.45 2.97 3.44 

Car 
1M-OM 2.20 2.75 3.18 3.60 
Modified 2.22 2.77 3.21 3.63 

Exhibition 
1M-OM 1.83 2.43 2.91 3.35 
Modified 1.86 2.45 2.91 3.36 

Station 
1M-OM 2.04 2.73 3.14 3.55 
Modified 2.07 2.73 3.15 3.57 

Street 
IM-OM 1.94 2.51 2.96 3.39 
Modified 1.97 2.53 2.98 3.41 

Train 
IM-OM 1.90 2.46 2.92 3.36 
Modified 1.92 2.48 2.94 3.37 

The objective quality measures results of the conventional 
and proposed modified approaches are evaluated and averaged 
for each SNR. Compared with previous IMCRA and DD ap­
proach, the results of PESQ are presented in TABLE II. TA­
BLE III and TABLE IV show the global SNR and the compo­
site measure Covl results respectively. As seen in the tables of 
objective quality results, better PESQ, global SNR and compo­
site measure Covl are achieved by the proposed modification 
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TABLE V. PESQ RESULTS OF LOW-BIT SPEECH CODING SYSTEM. (USING 
A PRE-PROCESSING OF ORIGINAL NOISE PRE-PROCESSING IN MELPE, 

IMCRA-OMLSA, AND THE PROPOSED MODIFIED METHOD) 

Noise type Method Input SNR 
OdB 5dB 10 dB 15 dB 

Melpe npp 1.75 2.14 2.47 2.75 
Airport 1M-OM 1.78 2.15 2.46 2.75 

Modified 1.8 2.15 2.47 2.77 
Melpe npp 1.76 2.16 2.49 2.74 

Babble 1M-OM 1.73 2.14 2.49 2.73 
Modified 1.74 2.15 2.48 2.74 

Melpe npp 1.88 2.26 2.55 2.77 
Car 1M-OM 1.91 2.28 2.54 2.76 

Modified 1.93 2.31 2.57 2.79 
Melpe npp 1.68 2.11 2.42 2.67 

Exhibition 1M-OM 1.69 2.11 2.41 2.67 
Modified 1.73 2.14 2.44 2.7 

Melpe npp 1.79 2.24 2.51 2.74 
Station 1M-OM 1.79 2.26 2.51 2.74 

Modified 1.82 2.27 2.52 2.76 
Melpe npp 1.73 2.13 2.44 2.68 

Street 1M-OM 1.76 2.13 2.43 2.67 
Modified 1.8 2.17 2.45 2.7 

Melpe npp 1.7 2.08 2.38 2.65 
Train 1M-OM 1.66 2.07 2.36 2.65 

Modified 1.68 2.08 2.38 2.67 

of IMCRA noise estimation and DD a priori SNR estimation. 
For most tested noise environments, the performance im­
provement is consistent. From a viewpoint of average, the 
proposed approach improves the PESQ by more than 1.17%, 
which is achieved by more accurate noise power estimation 
and a priori SNR estimation. 

As a pre-processing unit, speech enhancement algorithm is 
widely used in speech processing system to reduce background 
noise. Although some speech enhancement methods are able to 
achieve higher PESQ scores, they may be not suitable for being 
used as a pre-processing unit. Therefore, the proposed modifi­
cation is utilized in low-bit speech coding system Melpe [16]. 
PESQ scores of Melpe decoded speeches are evaluated and 
presented in TABLE V. Compared to the noise pre-processing 
used in Melpe codec and IMCRA-OMLSA, better performance 
of speech coding system is achieved by applying the modified 
speech enhancement. So the proposed method is effective and 
suitable for being a pre-processing. 

V. CONCLUSIONS 

This paper proposes a modified speech enhancement algo­
rithm based on well-known IMCRA noise estimation and DD a 
priori SNR estimation. A universal GMM of speakers' MFCCs 
is trained first, and then transformed to frequency domain. In 
speech enhancement step, minima tracking process of IMCRA 
noise estimation is adjusted by the current frame's noisy power 
spectrum and adjustment weighting factors. According to the 
speaker universal GMM, the frequency-varying weighting pa­
rameters in DD priori SNR estimation and modified IMCRA 
are utilized instead of constant parameters. Compared to the 
conventional IMCRA and DD approach, the proposed modi­
fied method provides better performance of noise power esti­
mation and a priori SNR estimation. From the results of objec­
tive quality tests, the proposed modification is able to improve 



the enhanced speech quality and the performance of speech 
processing system as a pre-processing unit. 
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