
IEEE Transactions on Consumer Electronics, Vol. 52, No. 3, AUGUST 2006

Contributed Paper
Original manuscript received May 18, 2006
Revised manuscript received July 3, 2006 0098 3063/06/$20.00 © 2006 IEEE

1118

An Implementation of Open Source Operating System on Multi-
processor System-On-a-Chip

Zhiming Tan, Shibao Zheng, Member, IEEE, Peilin Liu, Guixu Lin, and Shimei Yu

Abstract — Rich requirements from High Definition
Television (HDTV) decoder argue the supports of complex
architecture and Operating System (OS). As an embedded
system, mult-processor System-on-a-Chip (MPSoC) is an ideal
implementation of the decoder. Open source OS has many
advantages to be ported to embedded fields. This paper
describes the detailed process of its porting, including building
environment, kernel modification, and debug. The porting
specifications are constrained by the resources on the HDTV
SoC platform, development period, debug efforts, and system
robustness, etc. As an application of the open source OS, our
work shows the joint of industry practice and theory research1.

Index Terms —High Definition Television (HDTV), Multi-
processor System-on-a-Chip (MPSoC), Open source OS

I. INTRODUCTION
High Definition Television (HDTV) decoder System-On-a-

Chip (SoC) platform asks a support from a carefully designed,
high performance, and robust software system to meet its rich
demands, such as video decoding, audio decoding,
synchronizing between video and audio frames, program
information processing, and system controlling. The software
system in such an embedded system commonly consists of
Hardware-dependent Software (HdS), APIs, and applications
[1]. Operating System (OS) is one of the components in HdS.
It is an important role in the software architecture.

Open source OS is attracting more and more enthusiasts
with its sparkling features and free sources. Its dominant trend
is to apply in embedded systems [2]. Building embedded
systems is to use open OS as the kernel and other open source
tools as the framework [3]. Its industry application cases cover
embedded fields such as Portable Device Assistances (PDAs),
mobiles, field devices, network devices, and digital TVs [4].

1 This work was supported by National High Technology Research and

Development Program of P.R. China (863 Program) No. 2003AA1Z1070, and
by Program for Changjiang Scholars and Innovative Research Team in
University (IRT0426).

Zhiming Tan is with the Institute of Image Communication and
Information Processing (IICIP), Shanghai Jiao Tong University (SJTU),
Shanghai, P.R. China (e-mail: zhmtan@sjtu.edu.cn).

Shibao Zheng is with the IICIP, SJTU, Shanghai, P.R.China (e-mail:
sbzheng@cdtv.org.cn).

Peilin Liu is with SJTU, Shanghai, P.R. China (e-mail:
liupeilin@sjtu.edu.cn).

Guixu Lin is with the IICIP, SJTU, Shanghai, P.R. China (e-mail:
guixu_lin@sjtu.edu.cn).

Shimei Yu is with the IICIP, SJTU, Shanghai, P.R. China (e-mail:
honemle@sjtu.edu.cn).

Besides the basic services as provided by common OS,
Open source OS has more advantages to be implemented in
the HDTV decoder SoC platform. They are listed as follows:
·zero cost. The open source OS can be copied, distributed,

and modified freely [5]. We can port it on the SoC platform
without license and royalty fees. The free source code is on
the internet or from the processor vendor. Modifying and
adapting it to our own platform is the only effort.
· convenient building environment. Kernel building

environment has aspects of configuration and cross-
compilation. For configuration, most of the modular
components of kernel can be selected and configured with a
Graphic User Interface (GUI). For cross-compilation, the tools
of compiling, linking, and transforming on the host PC make
the building of binary image to the target platform feasible.
Internet facilitates the availability of the tools.
·rich file systems. File systems in the open source OS have

dozens of types, and the number is increasing. One specific
(i.e., second extended file system 2 (EXT2)) is mounted as the
root file system when the OS is booted. For some embedded
system without disk storage, it may be located on a ramdisk in
SDRAM. In some circumstance, information must be written
to flash on each operation for backup or on power failure for
recovery. Journaling Flash File System (JFFS) [6] is a choice
to be built on the flash.
·available shell utilities. Several kinds of shells are provided

for the open source OS, and BASH [7] is the most popular
one. Shell binary images can be wrapped into the file system
for upper-level operations, such as copy, dump, chmod, and
mkdir.
·open source device drivers. Device drivers constitute a big

part in the source codes. Open source gives reusability and
inspiration for the development of new device drivers.
·plentiful documentation and references. Readable articles

in the documentation directory in source code describe what
they are and how they act for some modules in the kernel.
Porting guide details and problem solutions can be available
on the internet or through mailing lists. All of them provide
practicable help when you are in a mess.

HDTV decoder SoC is a multi-processor platform with
system CPU, audio CPU, video decoder, and video processor.
Porting open source OS on Multi-Processor SoC (MPSoC) is
still a joint of theory research and industry practice. System
complexity, development period, debug efforts, and system
robustness [8] are still pressing the porting with many
problems and warnings. As a successful practice and research

Z. Tan et al.: An Implementation of Open Source Operating System on Multi-processor System-On-a-Chip 1119

of such work, we will give the details of open source OS2
porting procedure and careful tips on MPSoC.

Platform and OS hierarchy will be illustrated in the
following section. Section 3 gives building environment.
Kernel modification details including initialization, interrupt,
timer, and device drives will be given in section 4. Section 5
describes debug tips. Results will be given in section 6.
Section 7 concludes the paper and gives the future work.

II. PLATFORM AND OS HIERARCHY
We only describe what related with the open source OS

porting, including hardware architecture and processor
considerations. The hierarchy of open source OS is tightly
based on the platform.

A. Architecture
The specification of HDTV decoder comes from MPEG-2

standard [9]. Transport Stream (TS) is got from an external
tuner and sent to the module of TS Demultiplexer (TSD) via
Synchronous Parallel Interface (SPI). The demultiplexed
outputs are video Elementary Stream (ES), audio Packet
Elementary Stream (PES), and some Program Specific
Information (SPI). The video ES is decoded and processed by
the video decoder and processor, respectively. The audio PES
is decoded by the decode software running on the audio CPU.
The system CPU serves as a master for controlling over slave
audio CPU and hardware modules. The architecture of HDTV
decoder SoC platform is shown in Fig. 1.

Memory Controller 1 Memory Controller 2

 Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf

System CPU Audio CPU

EC-X-bus1

CPU1 MC IF

GPIO

EC-X-bus2

CPU2 MC IF

OSD

Audio PCM Out

Mix
MPEG Video

Processor
MPEG HD

Video Decoder

HOST IF1 HOST IF2 Commu. Regs Interrupt Controller

Peripheral IF EMI Timer UART1 UART2 I2C1 I2C2 SPI

TS
Demux

SPI
IF

I2S

BT709
RGB

GPIO

EJTAG

VD,VP

Flash Memory DB9 DB9 I2C I2C SPI

SPI

SDRAM1 SDRAM2

INT Clock Reset

Fig. 1 Architecture of the HDTV Decoder SoC Platform

Two Easy Connect (EC)-X-bus bridges connect between

two CPUs and X-buses. Hardware modules connect with X-
buses. The register accessing of some modules is put into
HOST IF1, 2. System and audio CPUs access memory through
Memory Controller1 (MC1), whereas the video decoder and
processor access through MC2. We design all the hardware

2 Linux as this case shows.

modules except for two CPUs, the video decoder, and the
video processor.

B. Processor Core
Two CPUs are chose from the RISC camp3, with 5-lelvel

pipeline, coprocessors, Memory Management Unit (MMU),
configurable caches, and EJTAG, etc. They have a precise
exception handling mechanism, through which CPU can
precisely return to the victim (whose address stored in the
specific register) after each exception. Different types of
exceptions have their specific entries in the address space, and
interrupt is one of them. Some interrupt pins are for hardware
(one pin specific for the timer), and some pins for software.
The external interrupts have no priorities in hardware, whereas
software handlers can define them [10].

C. OS Hierarchy
Porting the open source OS is constrained by specific

hardware resources. On the HDTV decoder SoC platform, it
mainly involves modifying kernel services, creating device
drivers, and changing shell utilities in the RAM disk, etc. The
kernel, device drivers, shell, and library constitute an integral
embedded OS.

Kernel Mode

K
ernel Services

Driver
Modules

User Mode Shell Utilities

Mem. Management

Scheduling

Communicating

…

Interrupt Handling

Input/Output

RAM Disk

Library

Fig. 2 The Open Source OS Hierarchy

III. BUILDING ENVIRONMENT
Kernel building from source code to binary image is

commonly through the way of host-to-target, and needs the
support of toolchains.

A. Host-to-target
Three factors decide the way of host-to-target when porting

the open source OS. The first is the limitation of resources on
the target. Low processor speed, limited storage space,
immature hardware, unavailable compiling environment,
limited application library, and inconvenient user interface on
the target platform make the kernel building really difficult.
The second is co-development requirement between hardware
and software. The executable binary image should be available

3 MIPS is a typical one.

IEEE Transactions on Consumer Electronics, Vol. 52, No. 3, AUGUST 2006 1120

before the hardware maturity to reduce the whole design
period. The third is the application-specific processor
architecture for each implementation. It needs much time and
effort to build different compilation environments for different
application systems.

In most situations, host processor type is different from
target. Therefore it needs cross-building tools of compilation,
link, and format transformation running on the host to get the
final executable images.

B. Toolchains
A toolchain is a complete collection of compiler and binutils

programs and can be run either as a cross-compiler, or native
on the target (if performance allows) [11]. In our context, we
define the toolchain as the collection of host OS, cross-
compilation tool, link tool, binary format transformation tool
(one item of the binutils), uploading tool, flash writing tool,
and debugger, etc.

Host OS is the base workbench for the kernel building.
Cross-compilation tool translates C and assembly source codes
into specific object files, and link tool links them together.
Binary format transformation tool transforms the binary kernel
image into required format.

Moving kernel image from the host PC to the target
platform can be handled through two methods according to
target storage types. The first is to upload to SDRAM with
ports of USB, net, and UART, etc. The second is to writr to
flash with parallel port or specific flash writing tool. Host
software utilities are all needed in two situations.

Kernel debugger can be chosen among software and
hardware debuggers for C source level or assembly level
debug. A software debugger can communicate with the target
kernel via UART port 2 (port 1 used for the console). Kernel
running information can also be output to the console for
debug (via the function printk()).A hardware debugger can
connect with EJTAG interface in the processor core.

IV. KERNEL MODIFICATION
Kernel modification is the main effort in the open source OS

porting. It mainly consists of module configuration, codes
adaptation, and device driver programming [12]. They lie in
the OS porting layer.

A. Module Configuration and Selection
The open source kernel is commonly a monolithic entity,

with the whole operating system (process management,
memory management, file system, and drivers, etc.) contained
within one binary image [13]. It benefits the kernel storage on
flash and loading into the SDRAM when running. The kernel
is also modular. Specific CPU architecture and services are
selected and configured into a single image for specific
embedded system. A friendly user interface is provided to
module selection and configuration. On the HDTV decoder
SoC platform, the main modules and services are configured
and selected as shown in Fig. 3.

We make a directory of “hdtvsoc” for the DHTV decoder
SoC platform, and hook it into the kernel under the item of
“Machine selection”. The configuration of “Loadable module
support” is for the loadable device driver modules. A size of
8,192KB ramdisk (RAM disk, a block of SDRAM memory
used as disk storage) is integrated into the kernel image, with
EXT2 included as the root file system. The serial ports
(UART1, 2) used in the platform are not standard ones. The
kernel console is based on the first one and the kernel
debugger is based on the second one.

 Code maturity level options --->

 [*] Prompt for development and/or incomplete code/drivers
Machine selection --->
 [*] Support for SJTU HDTVSOC board (EXPERIMENTAL)
Loadable module support --->
 [*] Enable loadable module support
 [*] Kernel module loader
General setup --->
 [*] Generate little endian code
 [*] System V IPC
 [*] Sysctl support
Block devices --->
 <*> RAM disk support
 (8192) Default RAM disk size
 [*] Initial RAM disk (initrd) support
Initrd options --->
 [*] Embed root filesystem ramdisk into the kernel
Character devices --->
 [*] Non-standard serial port support
 [*] HDTVSOC serial port support
 [*] Console on HDTVSOC serial port
File systems --->
 <*> Kernel automounter support
 <*> Kernel automounter version 4 support (also supports v3)
 [*] /proc file system support
 <*> Second extended fs support
Kernel hacking --->
 [*] Are you using a crosscompiler

Fig. 3 Module Configuration and Selection on the HDTV Decoder SoC
Platform

B. Platform Dependent Initialization
The initialization process is platform-dependent due to the

different module configuration. What specifically involved in
the HDTV decoder SoC platform is shown as bold characters
in Fig. 4. Board, timer, traps, interrupt, initrd, and console are
initialized and setup in start_kernel. Because many modules
and services are unselected, things done in init are few.
Loading and initializing the ramdisk is the most time-
consuming thing due to the big size of it. The initialization
process shows a simple version of call graph [14] in the open
source kernel.

C. Interrupt Framework
Interrupt sources (with priority and Interrupt ReQuest (IRQ)

number) consist of timer, VD, TSD, UART1, 2, I2C1, 2, audio
CPU, PCM out and system CPU. The last two are the interrupt
sources to the audio CPU.

The interrupts from HW modules are routed to the top
interrupt module, which prioritizes the interrupts, binds some

Z. Tan et al.: An Implementation of Open Source Operating System on Multi-processor System-On-a-Chip 1121

interrupts into one line and connects to CPU’s interrupt pin0 to
pin5. Therefore the dispatch framework of the system CPU has
two levels. The first level is from sources to the top interrupt
module, and the second is from the top interrupt module to the
system CPU.

 Boot loader

kernel_
entry

Set kernel stack
Clear bss section

init_arch Probe CPU
Handle parameters
Load MMU

start_kernel The first printk
Setup architecture
Handle command line
Init trap
Init IRQ
Init scheduler
Init soft IRQ
Init timer
Init console
Init modules
Init kernel mem cache
Start interrupt
Calibrate delay
Init kernel mem page
Init kmem cache size
Init page table cache
Init fork
Init process cache
Init virtual FS cache
Init buffer
Init page cache
Init signals
Init proc FS root
Init IPC
Check bugs
Init rest things

Set ioport base
Setup timer
Setup reboot

hdtvsoc setup

Setup bootmem
Setup initrd

init Lock kernel
Do basic setup
Prepare name space
Free init mem
Unlock kernel
Open initial console
Dup
Execve /sbin/init

Init sysctl
Init sock
Start context thread
Do init calls

Kernel running
Fig. 4 Kernel Initialization on the HDTV Decoder SoC Platform

Each module can have at most 5 interrupt outputs, and the
interrupt controller supports 32 modules. Therefore there can
be 160 interrupt sources for the system CPU in all [15].
Interrupt signals to the audio CPU are directly connected with
its pins.

All the interrupts to the system CPU are handled in the
kernel and interrupts to the audio CPU are handled in the
control SW component running on the audio CPU. The codes
of IRQ dispatch are implemented in assembly, and hooked into
the exception vector in the initializing process [1]. The
interrupt framework is shown in Fig. 5.

D. Timer
Timer in the open source kernel provides time slice for task

scheduling and interrupt services. It is so important that the
kernel can not run without the timer service.

System
CPU

Audio
CPU

Timer

Interrupt
C

ontroller

Top Interrupt
Module

VD

TSD

I2C1 I2C2

UART1

UART2
PCM Out

IRQ dispatch do_IRQ hw_irq_handler

H
andlers in device drivers

 IR
Q

 handler

IRQ dispatch

(Priority, IRQ Number)

Interrupt Sources Program Flow Interrupt Handling

(5, 1)

(4, 2)

(3, 3)
(2, 4)

(2, 10)
(2, 11)

(2, 12)
(2, 13) (2, 6) (2, 7)

(2, 8)
(2, 9)

(2, 5)

(2, 2)

(0, 3)

…
pin0

pin4 pin5 pin0

pin2

Fig. 5 Interrupt Handling Framework and Services

Count and compare registers constitutes the timer. Count
register increments every other clock and compare register
maintains a stable value. When the value of count register
equals the value of compare register, a timer interrupt is
triggered [10]. Timer interrupt is handled via the function of
hdtvsoc_timer_interrupt(), in which do_timer() is called.

E. Device Drivers

Device drivers control hardware modules and provide
services of configuration and access for the open source kernel.
They run in the kernel mode and access the same privileged
resources as kernel codes. Two methods are used to implement
them: being compiled into the kernel as an integral entity, and
being compiled as loadable modules. The initialization phases
are different for different compilation methods. The former is
in kernel initializing and the latter in kernel running, as shown
in Fig. 6. The initialization of device drivers covers things:
setting parameters and status, requesting interrupt resources,
and requesting memory, etc. The services of device drivers
include interrupt service, status control services, and I/O
interface services, etc.

O
S R

unning

D
evice D

river
Initialization

OS Initialization

Device Initialization
(Parameters, Status)

Memory Request
for Device Drivers

Interrupt
Resources Request

Bootstrap Applications

Interrupt Services

Status Control
Services

I/O Interface
Services

Other Services

Program Flow

Calling and Accessing

Functions and Services
in Device Drivers

SDRAM Flash Interrupt Regs Control Regs Status Regs Data Regs SRAM

I2Cs SPI OSD TSD UARTs EMI Mem Access

Fig. 6 The Device Driver Framework

IEEE Transactions on Consumer Electronics, Vol. 52, No. 3, AUGUST 2006 1122

In the HDTV decoder SoC platform, device drivers handle
two things: setting status (for interrupt registers, interrupt
masking registers, status registers, and control registers) and
accessing data (for some data holders, such as SDRAM, GPIO,
and data registers). Control registers get control messages from
CPU, actually from user program. Status registers show the
status and action of device modules. From the hardware
modules’ view point, control registers are input-style while
status registers are output-style. Data registers are data holders
in the data-transferring paths. Some hardware modules need
them to hold the data for next modules. For example, we put
data into the GPIO data registers, which can light Light-
Emitting Diodes (LEDs). The LED messages can show failure
or success signals in the debug procedure [1].

V. DEBUG
The open source kernel debug on the immature hardware

platform costs much time and carefulness. Because bugs exist
not only in the kernel codes but also in immature hardware
modules, we can not decide which fault is to which part
without deep investigation. In such circumstance, finding bugs
in assembly-level is more efficient than in C source-level
because the former is instruction precise.

The processor features pipeline execution flow and precise
exception. The exception context can be explicitly traced
because the victim and all the following instructions in the
pipeline are cancelled when each exception happens [10].
Exceptions are classified into several types for the “cause”
register coding, through which we can know whether the
exception caused from software or hardware. For example,
“address error on load or store” shows an exception that may
be caused by illegal reference to kernel address in user mode.
It is a software exception. On the other hand, “bus error” may
show that something wrong in the address translation or
memory transaction. It is a hardware fault.

A debugger connecting with EJTAG interface is a
fundamental tool for assembly-level debug [16]. It helps to
catch the exception context. On the HDTV decoder SoC
platform, Memory Controller 1 (MC1) is an important
hardware module in the data path of “peripheral-system CPU-
SDRAM”. The kernel is a full-featured software component to
test if the data path is working well. We find some bugs of
MC1 through this method. One of them is improperly
supported burst transaction when the caches miss.

VI. RESULT
The open source OS is ported to a verification board of

HDTV decoder SoC with two hard processor cores, two
FPGAs with 6,000,000 gates, 32MB SDRAM, 8MB flash, and
peripheral interfaces, as shown in Fig. 7.

The console is based on UART1, through which the kernel
interacts with the user with output information and input
commands. The final OS image (including ramdisk, glibc,
some shell utilities, and SoC-specific device drivers) has a size

of about 2.8MB. We develop a boot loader running on the
system CPU to initialize the hardware environment and start
up the kernel. The boot loader also triggers the audio CPU to
execute its instructions. We develop system control software
on the system CPU to control the whole system, and audio
control software to control the behavior of the audio CPU.

Fig. 7 The FPGA Verification Board

VII. CONCLUSION AND FUTURE WORK
The open source OS has more and more applicable values in

embedded system, especially complex MPSoC. Porting the
kernel involves investigating hardware constraints, making
compilation environment and toolchains, modifying some
codes in the OS porting layer, debugging kernel on immature
hardware, and co-verification with hardare designers, etc. As a
successful experience, this paper has given the open source OS
porting details on the HDTV decoder SoC platform.

The open source OS porting is still a joint of industry
application and theory research when meeting complex multi-
processor system. Firstly, design factors such as hardware
resources, design cost, cycle, debug efforts, and system
robustness constrain the consideration of the OS porting. For
example, as a monolithic kernel, it needs a big ROM storage
space in embedded system (for the implementation of HDTV
decoder SoC platform, the image size is nearly 3M Bytes). An
approach of call graph [14] is used to adapt the kernel to
specific embedded application with the least size. However, it
needs another porting effort when requirements change.
Secondly, the standardization of OS components [17]
facilitates auto generation of the kernel, building environment,
and debug, etc. Apparently this can accelerate the porting
process. Nevertheless, standardization is not an easy thing and
the goal of auto generation is still has a long way to achieve
[18]. Thirdly, the open source kernel is highly modularized
and has a big number of versions, which are ever increasing.
Coupling between the kernel modules heavily affects the
maintainability of kernel between all these versions [19]. It is a

Z. Tan et al.: An Implementation of Open Source Operating System on Multi-processor System-On-a-Chip 1123

big problem facing the embedded world for things such as
stability [20], maintenance, and updating.

ACKNOWLEDGMENT
We give special thanks to all the team members in the

HDTV decoder SoC project for the helpful discussions and
contributions.

REFERENCES
[1] Z. Tan, S. Zheng, J. Hu, Y. Chen, and P. Liu, “Design and

implementation of the software system on MPSoC: an HDTV decoder
case study,” unpublished.

[2] D. Geer, “Survey: Embedded Linux Ahead of the Pack”, IEEE
Distributed Syst. Online, Vol. 5, No. 10, pp. 1-6, Oct. 2004.

[3] K. Yaghmour, Building Embedded Linux Systems, O'Reilly, 2003.
[4] S. Moon, J. Kim, K. Bae, J. Lee, and D. Seo, “Embedded Linux

Implementation on a Commercial Digital TV System”, IEEE Trans.
Consumer Electron., Vol. 49, No. 4, pp. 1402-1407, Nov. 2003.

[5] http://www.gnu.org/copyleft/gpl.html, GNU General Public License.
[6] http://developer.axis.com/software/jffs/, JFFS Home Page.
[7] http://www.gnu.org/software/bash/bash.html, BASH.
[8] T. Nakajima, M. Sugaya, S. Oikawa, “Operating systems for Building

Robust Embedded Systems”, Object-Oriented Real-Time Dependable
Systems, 10th IEEE International Workshop on, 2-4, pp. 211-218, Feb.
2005.

[9] ISO/IEC International Standard 13818-1, “Generic coding of moving
pictures and associated audio information: systems,” 1996.

[10] MIPS Technologies Inc., MIPS32 4KTM Processor Core Family
Software User’s Manual, Revision 01.17, http://www.mips.com/, Sept.
2002

[11] http://www.linux-mips.org/wiki/Toolchains, Toolchains.
[12] J. Sun, “Linux MIPS porting guide,” http://linux.junsun.net/porting-

howto/.
[13] A. Lennon, “Embedding Linux”, IEE Review, Vol. 47, No. 3, pp. 33-37,

May 2001.
[14] C. Lee, Z. Rong, and J. Lin, “Linux Kernel Customization for

Embedded Systems by Using Call Graph Approach”, Design
Automation Conf., Proceedings of the ASP-DAC 2003, 21-24, pp. 689-
692, Jan. 2003.

[15] Y. Chen, G. Lin, F. Wang, and Z. Tan, “Multiple MIPS 4Kc core based
interrupt controller design and its implementation on HDTV SoC
platform”, unpublished.

[16] http://www.fs2.com/, First Silicon Solutions.
[17] S. Hong, “Embedded Linux Outlook in the PostPC Industry”, Object-

Oriented Real-Time Distributed Computing, Sixth IEEE International
Symposium on, 14-16, pp. 37-40, May 2003.

[18] V. J. III Mooney, and D. M. Blough, “A hardware-software real-time
operating system framework for SoCs,” Design & Test of Computers,
IEEE, Vol. 19, Issue 6, pp. 44-51, Nov.-Dec. 2002.

[19] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt,
“Maintainability of The Linux Kernel”, Software, IEE Proceedings, Vol.
149, No. 1, pp. 18-23, Feb. 2002.

[20] J. Champaign, A. Malton, X. Dong, “Stability and Volatility in the
Linux Kernel”, Software Evolution, Proceedings, Sixth International
Workshop on, 1-2, pp. 95-102, Sept. 2003.

Zhiming Tan graduated from Science and Technology of
Shannxi University, Xianyang, P.R. China, and received
B.S. & M.S. degrees in 2000 and 2003, respectively. He
is currently working toward the Ph.D degree in electronic
engineering at the Institute of Image Communication and
Information Processing (IICIP) of Shanghai Jiaotong
University (SJTU), Shanghai, P.R. China. His research
interests include embedded software (Linux kernel, and

boot loader, etc.), digital television, and video segmentation.

Shibao Zheng (M’01) graduated from Xidian University,
Xi’an, P.R. China and received the B.S. and M.S.
degrees in 1983 and 1986 respectively. From 1986 to
1999, he was an expert of the national project in HDTV
and the chief designer of the ground digital TV
equipments in the project of Shenzhou Spaceship. From
2000 to now, he is a professor and doctoral tutor in the
IICIP and IC and System Research Center (ICSRC) of

SJTU. His general research interests include DTV, ASIC, and multimedia
system.

Peilin Liu is a PhD Graduate (1992~1998) from the
University of Tokyo majoring in Electronic Engineering
and worked there as a Research Fellow in 1999. After
that, she was hired as a Senior Researcher for Central
Research Institute of Fujitsu, Tokyo (1999~2003). Her
research mainly focuses on Multimedia (Audio/Video)
Processing, IC Design and High-performance Processor
Development. She is now a professor of Department of

Electronic Engineering in SJTU.

 Guixu Lin received B.S. degrees in 2001 from Harbin
Engineering University, Harbin, P.R. China, and M.S.
degrees in 2003 from Harbin Institute of technology,
Harbin, P.R. China. He is currently working toward the
Ph.D degree in electronic engineering at the IICIP of
SJTU, Shanghai, P.R. China. His research interests
include DTV codec system, Multimedia system design

and ASIC implementations.

Shimei Yu received B.S degree in 2004 from Huazhong
University of Science and Technology, Wuhan, P.R.
China. He is now working toward the M.S degree in
electronic engineering at the IICIP of SJTU, Shanghai,
P.R. China. His research interests include embedded
software, digital television.

