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To address the challenging problem of vector quantization (VQ) for high dimensional vector using large
coding bits, this work proposes a novel deep neural network (DNN) based VQ method. This method uses a
k-means based vector quantizer as an encoder and a DNN as a decoder. The decoder is initialized by the
decoder network of deep auto-encoder, fed with the codes provided by the k-means based vector quan-
tizer, and trained to minimize the coding error of VQ system. Experiments on speech spectrogram coding
demonstrate that, compared with the k-means based method and a recently introduced DNN-based
method, the proposed method significantly reduces the coding error. Furthermore, in the experiments
of coding multi-frame speech spectrogram, the proposed method achieves about 11% relative gain over
the k-means based method in terms of segmental signal to noise ratio (SegSNR).

� 2016 Elsevier GmbH. All rights reserved.
1. Introduction

Vector quantization (VQ) is a fundamental technique for data
compression, such as video coding and audio coding. In traditional
VQ methods, the k-means or Linde-Buzo-Gray (LBG) algorithm
[1,2] is most commonly used in codebook training (clustering).
However, when it comes to large vector dimensions and codebook
sizes, direct use of the VQ method suffers from a serious complex-
ity barrier. Some constrained VQ methods, such as Partitioned VQ,
are commonly used to reduce storage and computation complexity
[3,4]. Unfortunately, these compromised methods may severely
increase the coding error.

Recently, inspired by the success of deep neural network (DNN)
in data dimensionality reduction [5,6], DNN-based approaches
have been developed to address this problem [7–9]. In [7], a deep
auto-encoder (DAE) with a binary coding layer was learned to code
the high-dimensional vector. In speech spectrogram coding, this
method showed a considerable performance gain over traditional
VQ technology. Nevertheless, when many of the activations of
the coding units are far from binary, quantifying them to binary
values may cause large distortions. In order to make the activations
of the coding layer as close to binary as possible, an effective
approach is to add Gaussian noise to the input of the coding layer
[8]. Another approach is to force the coding layer to be binary dur-
ing the forward pass in the fine-tuning [9]. All the above works
were aimed at getting a binary coding layer from the real-valued
activations of a DNN. In principle, quantifying a floating-point
value to a single bit would inevitably cause distortion.

More recently, in [10], the authors utilized the traditional VQ
method (k-means) as an initializer to learn a DNN-based vector
quantizer for acoustic information retrieval. The output of the vec-
tor quantizer is the codeword label obtained by the traditional VQ
method. The output layer of the neural network is a softmax layer
whose node number is the same as the codeword number. In fact,
this architecture is designed to learn speech content information
from the initializer. However, as mentioned by the authors, the
frame accuracy is not high (below 50%) for the training and devel-
opment set. Thus, this architecture is unsuitable for data compres-
sion applications. Moreover, it is generally impractical to
implement a VQ system with such an architecture when the num-
ber of coding bits (N) is large, since the number of the softmax out-
put layers nodes, which is equal to the codeword number, is 2N in
this case.

This work proposes a novel DNN-based VQ method to achieve
improved performance for quantizing high dimensional vector
with a large-size codebook. Firstly, we learn a DAE using greedy
layer-wise pre-training and back-propagation fine-tuning meth-
ods. Then, a DNN, which is initialized by the decoder network of
DAE and fed with the codes obtained by the traditional VQ method,
is trained as the VQ decoder. Unlike the DNN architectures using
binary coding layer in [7] and binary output layer in [10], the input
data of the proposed DNN architecture is binary. From the view of
VQ system, the method in [7] learns both an encoder and a
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decoder, and the method in [10] learns an encoder, whereas our
method tries to learn a decoder. The main advantage of the pro-
posed method over the DAE is that it avoids the distortions induced
by the binary coding layer. Moreover, utilizing the strong represen-
tation power of DNN framework, it has the capability to reduce the
coding error of the traditional VQ system. Experiments on speech
spectrogram quantization have been conducted to evaluate the
performance of the new method in comparison with several repre-
sentative methods. The results showed that the new method has
smaller distortions compared with the traditional k-means based
method and the recently proposed DNN-based method.

The rest of this paper is organized as follows. In Section 2, we
briefly review the k-means based VQ method. Section 3 introduces
the details of the proposed DNN-based VQ method. Section 4 pre-
sents an implementation of the new VQ method for speech signal.
The experimental results are given in Section 5. Finally, we sum-
marize our work in Section 6.
Fig. 1. Framework of the proposed DNN-VQ system.
2. Review of vector quantization based on k-means

Traditional VQ methods commonly employ the k-means or LBG
algorithm for codebook training. In the training stage, a standard k-
means algorithm is used to find the cluster centroids which are
called codewords. In the coding stage, the encoder finds the near-
est centroid for a new vector and transmits its index to the deco-
der, based on which the decoder retrieves the corresponding
codeword in the codebook. The overall operation of VQ can be
regarded as composition of two operations

QðXÞ ¼ DðIÞ ¼ DðEðXÞÞ ð1Þ

where Dð�Þ denotes a decoder, Eð�Þ denotes an encoder, and I is the
index (i.e. code). The distortion is defined as

d ¼ kX � bXk2 ð2Þ

where bX ¼ QðXÞ is the quantized vector.
It is well known that the k-means optimization problem is NP-

hard in general [11]. Moreover, for training high dimensional vec-
tor with large size of clusters, the k-means algorithm suffers from
large memory consumption and slow convergence speed. Thus, the
largest codebook sizes used typically range from 210 to 212 and the
largest vector dimensions used are typically from 40 to 60. To
break through this limitation, some constrained VQ methods, such
as Partitioned VQ, are commonly used. The Partitioned VQ strategy
partitions a high dimensional vector into two or more subvectors,
and then, training and coding each subvector individually. How-
ever, this strategy may severely degrade the performance when
there is substantial statistical interdependence between different
subvectors. More recently, many strategies have been proposed
to speed up the k-means algorithm, such as using triangle mini-
batch optimization [12], utilizing graphics processor units (GPUs)
[13], and seeding carefully [14]. But these methods are still imprac-
tical and inefficient when both the vector dimension and cluster
number are large.

This paper focuses on VQ of high dimensional vector using large
coding bits and its application on speech signal compression.
Firstly, we quantize 121-dimensional speech power spectra using
54-bit. Due to the impracticality of applying the standard VQ
method, the spectrum vector is partitioned into four subvectors
with dimensions of 30, 30, 30, and 31, and these subvectors are
quantized with bits of 10, 9, 9, and 8, respectively. This quantizer
is used to exploit the intra-frame correlation of the speech spec-
trum. Then, we quantize N frames speech power spectra using
9 ⁄ N bits, and each speech frame is quantized with 9-bit applying
standard VQ. This quantizer is used to exploit the inter-frame cor-
relation. These vector quantizers are constituents of the proposed
DNN-based VQ method, and are also baselines for the evaluation.

3. Proposed DNN-based vector quantization framework

In this section, firstly, we introduce the framework of the pro-
posed DNN-based VQ method. Then, the training procedure of
the deep auto-encoder is described. Finally, a DNN-based decoder
is presented in details. In the following, we call the proposed
method DNN-VQ for short.

3.1. Framework of the DNN-VQ

Fig. 1 illustrates the framework of the proposed DNN-VQ sys-
tem, which employs a traditional VQ quantizer as the encoder
and a DNN as the decoder. The codebook in the encoder is trained
with the k-means algorithm discussed in Section 2. The codeword
index I (i.e., code) for each vector X is obtained by the standard VQ
process. The DNN in the decoder is initialized with a DAE which
will be introduced in the following section. The input of the DNN
is the code I obtained from the encoder, and the expected output
is exactly the input vector X.

The proposed DNN-VQ system utilizes an encoder function Eð�Þ
in (1) to map the input vector X to code I, and uses a DNN-based
non-linear function Fð�Þ to perform the reverse mapping. The dis-

tortion of the DNN-VQ system is kX � FðEðXÞÞk2, which is also the
cost function used in the DNN training. The main advantage of
the proposed DNN-VQ system over the traditional k-means based
VQ system is as follows. The traditional decoder just retrieves the
vector using a codeword from the trained codebook, while the
DNN-based decoder performs a sophisticated feed-forward pass
to reconstruct the vector. The DNN can extract essential features
of the training data, and the code Imakes sure that the coding layer
of DNN is binary. Using the combined strategy, DNN-VQ has the
capability to reduce the coding error of the VQ system.

3.2. Deep auto-encoder

In this work, we use a stack of auto-encoders to learn each layer
of the DNN rather than restricted Boltzmann machine (RBM) used
in [7–9]. Compared with RBM, the auto-encoder is easier to train
and can be used to obtain any parametric layer [15].

An auto-encoder firstly maps an input vector x to a hidden rep-
resentation y using a non-linear mapping function
f hðxÞ ¼ sðWxþ bÞ, parameterized by h ¼ fW;bg. W is a weight
matrix, b is a bias vector, and sðxÞ ¼ 1

1þeð�xÞ is an active function.
Then, the resulting hidden representation y is mapped back to a
reconstructed vector z using a reverse function f 0h0 ðyÞ, with

h0 ¼ fWT;b0g. The parameters of this model are optimized by min-
imizing the average reconstruction error over the training set

h�; h0� ¼ argmin
h;h0

1
n

Xn
i¼1

LðxðiÞ; zðiÞÞ ð3Þ

where zðiÞ ¼ f 0h0 ðf hðxðiÞÞÞ;n is the size of the training set and L is the
squared error loss function



Fig. 3. Left: illustration of learning a stack of auto-encoders. Right: description of
the fine-tuning procedure of deep auto-encoder.
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Lðx; zÞ ¼ kx� zk2 ð4Þ
A deep auto-encoder (DAE) is a deep neural network that is

built by a stack of auto-encoders, where the output of each layer
is wired to the inputs of the successive layer [16]. A popular
approach to train the stacked auto-encoders is to conduct greedy
layer-wise training, which is demonstrated in Fig. 2. The training
procedure firstly train an auto-encoder to minimize square error
(i.e., E in Fig. 2) of reconstructed error of the raw input, and then
iteratively train the successive layer using the hidden layers’ out-
puts (i.e., code in Fig. 2) of previous auto-encoder. After that, unfold
all the auto-encoders into a DAE and initialize its parameters.
Finally, fine-tune all the parameters using global reconstruction
error.

In summary, the training procedure is as follows.

(1) Train the first layer as an auto-encoder using the raw input
data.

(2) Iteratively train the successive layer using the hidden units’
outputs of previous auto-encoder.

(3) Unfold all the auto-encoders into a DAE, and fine-tune the
DAE using back-propagation to make its output as similar
as possible to its input.

Fig. 3 illustrates an example for learning a stack of auto-
encoders and fine-tuning the deep auto-encoder. In the left, there
are four auto-encoders, with input-hidden layer size 121-2048,
2048-2048, 2048-2048, 2048-36, respectively. Thus, the unfolded
DAE has a 121-dimensional input/output layer and seven hidden
layers. In the right, the network 121-2048-2048-2048-36 (denoted
by network layer’s size) is encoder, and the reverse network is
decoder. The middle hidden layer is called coding layer, with 36
hidden units.
Fig. 4. Training procedure of the DNN-based decoder.
3.3. The DNN-based decoder for vector quantization

For the fine-tunedDAE, we can quantize the output of the coding
layer to either zero or one with a threshold (e.g., 0.5). These quan-
tized codes are identical to the VQ codes. In the case that most of
the outputs of the coding layer are far frombinary, we can addGaus-
sian noise to the input of the coding layer or force the output of the
coding layer tobebinary tomake thedistributionof coding layer clo-
ser to binary. Nevertheless, quantizing a floating-point value to a
single bit would inevitably causemore or less distortion. If the input
of decoder network itself is binary, this distortion can be avoided.

Fig. 4 illustrates the diagram of the proposed DNN-based deco-
der network for VQ. The network architecture is the same with the
decoder of DAE in Fig. 3. That is, the network architecture is 36-
2048-2048-2048-121 (denoted by network layer’s size). The
weights of the network are initialized by the decoder network of
fine-tuned DAE. We are convinced that the fine-tuned DAE has a
strong capability to represent the input data with the real-valued
coding layer. In Fig. 4, the input of the DNN-based decoder is the
codeword index (i.e., I in (1)) rather than the output of the encoder
network of DAE, and the expected output is the input data of the
VQ system (i.e., X). Compared with those relative DNN’s structures
Fig. 2. Illustration of greed
[8–10], this structure ensures that the input value of the decoder
network is exactly binary.

Theoretically, the DNN in Fig. 4 is expected to learn a non-linear
function F that maps the codeword I to the raw input data
X; F : I ! X. The learned function is used to replace Dð�Þ in (1) to
reduce distortion of the traditional VQ system. The objective func-

tion used for training is kFðIÞ � Xk2, which is equal to the distortion
in (2). From another point, the DNN has the capability to capture
essential features of the training data, such as phonological fea-
tures of speech signal. This makes sure the DNN-based decoder
can reconstruct feature-based data rather than retrieves codeword
from codebook.

4. Vector quantization of speech spectrogram

The proposed DNN-VQ system can be applied to compression of
various kinds of high-dimensional data, such as image, video and
audio. As an example, this section presents an implementation of
the new VQ method for speech signal in the frequency domain. It
should be noticed that we only quantize the speech magnitude
spectra.
y layer-wise training.



Fig. 5. Diagram of VQ for speech spectrogram using DNN-VQ system.

Table 1
Bit allocation of partitioned VQ for 121-dimensional vector using the k-means algorithm.

Total Bit allocation for each partition

121 1–30 31–60 61–90 91–121
36-bit 10-bit 9-bit 9-bit 8-bit

Table 2
Comparison of average distortions (squared Euclidean norm) on the training set,
validation set, and test set.

VQ system Training set Validation set Test set

DNN-AN 0.211 0.345 0.347
DNN-FB 0.404 0.406 0.406
DNN-VQ 0.210 0.212 0.212

k-means-VQ (baseline) 0.232 0.232 0.232
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The diagram of VQ for speech spectrogram is shown in Fig. 5.
In the encoder, the speech signal is framed and transformed into
the frequency domain. The log-power magnitude spectra are
normalized and coded by the trained DNN-VQ system. In the
decoder, the log-power magnitude spectra are decoded by the
DNN-VQ system. Subsequently, a de-normalization process is
used to obtain the actual spectrogram. Then, an inverse transform
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Fig. 6. Average LSD versus freq
is performed to obtain the time-domain signal. Finally, an
overlap-add method is utilized to synthesize the waveform of
the speech signal.

We use log-spectral distortion (LSD) to measure the spectra

coding error. The LSD between spectra PðxÞ and bPðxÞ is defined as

DLS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2p

Z p

�p
10log10

PðxÞbPðxÞ

" #2

dx

vuut ð5Þ

For the reconstructed speech signal, we use segmental signal to
noise ratio (SegSNR) to assess the objective speech quality

SNRseg ¼ 10
M

XM�1

m¼0

log10

PNmþNþ1
n¼Nm

x2ðnÞPNmþNþ1
n¼Nm

ðxðnÞ � x̂ðnÞÞ2
ð6Þ

where xðnÞ is the input signal, x̂ðnÞ is the reconstructed signal, N is
the frame length, M is the number of frames in the signal, and Nm is
the start index of mth frame.
cy Bins
0 80 100 120

DNN_AN
DNN_FB
DNN_VQ
k-means-VQ

uency bins on the test set.



Table 3
Average LSD (dB), SegSNR (dB) and PESQ results of different VQ methods on the test
set.

VQ system LSD SegSNR PESQ

DNN-AN 6.64 5.07 2.60
DNN-FB 7.15 4.11 2.30
DNN-VQ 5.19 7.35 3.25

k-means-VQ (baseline) 5.44 6.84 3.08
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In addition, perceptual evaluation of speech quality (PESQ),
which has a high correlation with subjective score [17], is also used
to evaluate the quality of the reconstructed speech signal. More
details of the evaluation settings will be introduced in the follow-
ing section.
5. Evaluation

In this paper, we use Resource Management corpus [18] for
evaluation. There are totally 36,608 utterances (about 29.5 h) in
this corpus. We randomly pick 32,608 utterances as training set,
2000 utterances as validation set, and the remainder 2000 utter-
ances as test set. All these speech data are down-sampled to
8 kHz and framed to 240 samples with hamming window. The
frame shift is 120 samples (50% overlapped). A short-time Fourier
analysis is used to compute the discrete Fourier transform (DFT) of
each overlapped frame. Then, the 121-dimensional log-power
spectra are used to train the neural network.

The settings for the DNN training are as follows: the datasets are
divided into small ‘‘mini-batches” of 128 cases. In the pre-training
of each stacked auto-encoder, the momentum is set to 0.5, the
learning rate is 0.05, and the number of epoch is 20. In the fine-
tuning of the DAE, the momentum is set to 0.9, and the initial learn-
ing rate is set to 0.1. The learning rate is gradually reduced by a fac-
tor of 0.9 when the decrease of the validation error between two
consecutive epochs is less than 0.02%. The training process is
stopped when the validation error decrease is less than 0.01%. The
training of the DNN-based decoder follows the same setting.

5.1. Evaluation of the proposed DNN-VQ system

The baseline of this evaluation is a 36-bit vector quantizer that
is based on k-means (denoted by k-means-VQ). Since it is unfeasi-
ble to implement the k-means method with 236 clusters for 121-
dimensional vector, the Partitioned VQ strategy is adopted. The
121-dimensional vector is partitioned into four sub-vectors, and
each partition is allocated with a few of bits. The details of vector
partition and bit allocation are shown in Table 1. The sub-vector
1–30 which contains relatively more speech information is allo-
cated with more bits, and the sub-vector 91–121 which contains
relatively less speech information is allocated with fewer bits. As
there are totally more than 6 million frames in the training set,
we randomly pick 0.1 million frames for the k-means clustering.
This VQ system is implemented not only for comparison but also
Table 4
Average LSD (dB), SegSNR (dB) and PESQ results using different number of frames with co

VQ system Vector dimension/ Coding bits

DNN-VQ 121/9
242/18
484/36
968/72

k-means-VQ (baseline) 121/9
for training the proposed DNN-based VQ system (denoted by
DNN-VQ).

A DAE with binary coding layer is also trained for comparison.
Two methods are used to make the coding layer closer to binary:
adding Gaussian noise to the input of the coding layer (denoted
by DNN-AN), forcing the output of the coding layer to be binary
(denoted by DNN-FB). The DAE architecture is 121-2048-2048-20
48-36-2048-2048-2048-121, which is illustrated in Fig. 3. The
decoder network architecture is 36-2048-2048-2048-121, which
is illustrated in Fig. 4. For the DNN-AN system, the mean of the
added Gaussian noise is set to zero, and the standard deviation is
chosen via cross-validation.

The average distortions (i.e. squared Euclidean norm defined in
(2)) of different systems on the training set, validation set, and test
set are listed in Table 2. The distortions of k-means-VQ on all data
sets are identical, but those of the DNN-based VQ systems are not.
This is because the DNN-based system is generally more likely to
suffer from the overfitting problem. We use the early-stopping
strategy to combat this problem by monitoring the model’s perfor-
mance on the validation set. The results in Table 2 show that DNN-
VQ significantly outperforms the baseline. In contrast, DNN-AN
and DNN-FB underperform the traditional VQ system. This is
because DNN-AN and DNN-FB are suitable for coding long frames
(e.g., 9 frames in [7]), but unsuitable for short frames, which is
the case in our experiment settings.

Then, we apply the de-normalization process to obtain the
spectrogram and examine more details of the coding errors in
terms of LSD across the frequency range. The average LSD results
of each frequency bin on the test set are shown in Fig. 6. Clearly,
DNN-VQ achieves the smallest LSD in most frequency bins. Espe-
cially, in the frequency bins 30, 60, and 90, the distortions of k-
means-VQ increase dramatically, which is caused by the vector
partition. The LSD results averaged over all the frequency bins
are listed in the second column of Table 3. Compared with the
baseline, DNN-VQ achieves a 4.6% lower LSD (from 5.44 dB to
5.19 dB).

Finally, we synthesize the time-domain speech signal and qual-
itatively examine the speech quality using SegSNR and PESQ. The
results are shown in the third and fourth columns of Table 3. It
can be clearly seen that, in comparison with the baseline, DNN-
VQ achieves about 7.4% relative gain in terms of SegSNR (from
6.84 dB to 7.35 dB) and about 5.5% relative gain in terms of PESQ
score (from 3.08 to 3.25).

5.2. Quantization of the acoustic context information using the DNN-
VQ system

In this evaluation,we demonstrate the capability of the proposed
method in quantizing acoustic context information. That is, more
than one frame of speech signal is coded using the DNN-VQ system.
The baseline of this evaluation is a 9-bit vector quantizer based on
k-means. Since it is feasible to implement k-means with 29 clusters
for 121-dimensional vector, the integral speech spectrum is used for
clustering.With this setting, the distortion caused by the vector par-
tition, which is illustrated in Fig. 6, can be avoided.
nstant compression ratio.

LSD SegSNR PESQ

6.88 4.18 2.33
6.70 4.56 2.45
6.62 4.64 2.48
6.70 4.57 2.50

6.89 4.18 2.33
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Using DNN’s layer size to denote each layer, the DAE architec-
ture for this evaluation is 121 ⁄ N-2048-2048-2048-9 ⁄ N-2048-
2048-2048-121 ⁄ N, where N ¼ f1;2;4;8g is the number of frames.
That is, DAE’s the input/output layer’s size is 121 ⁄ N. The hidden
layers’ size are 2048-2048-2048-9 ⁄ N-2048-2048-2048, in which
the coding layer’s size is 9⁄N. For example, when N is 8, the input
vector dimension is 968, and the coding layer’s size is 72. This
makes sure the compression ratio is constant. The input of the
decoder network is obtained from the 9-bit vector quantizer frame
by frame. The data sets of this evaluation are the same as Sec-
tion 5.2, but it should be noticed that the number of samples is
divided by N for the N frames acoustic context. For instance, there
are more than 6 million training samples when N is 1, but there are
only about 0.78 million training samples when N is 8.

The results of quantizing multiple frames with constant com-
pression ratio on the test set are shown in Table 4. Compared with
the baseline, DNN-VQ has distinctly better performance, e.g., a
3.92% lower LSD (from 6.89 dB to 6.62 dB), an 11% higher SegSNR
(from 4.18 dB to 4.64 dB), and a 7.3% higher PESQ (from 2.33 to
2.50). The performance of DNN-VQ improves as the number of
frame increases, except for the case of 8 frames. This is because
there are more than 10 million parameters in the DNN model,
but only 0.78 million training samples are available when the
number of frames is 8. It can be expected that better performance
can be attained when more training data are used.

6. Conclusion and future work

This paper proposed a novel DNN-based VQ method for coding
high-dimensional vector with large codebook sizes. This method is
derived via combining the traditional VQ technique and a DNN-
based binary coding procedure. This combination ensures that
the input of the decoder network is exactly binary and avoids the
distortions induced by the binary coding layer in DAE. This method
also has the capability to reduce the coding error of the traditional
VQ system. Evaluation results on speech signal showed that, the
proposed method can attain significantly better performance than
the traditional k-means based method.

The proposed method would be preferred in many practical
downstream applications, especially for ultra-low bit-rate speech
coding [19], where coding high-dimensional vector with large bits
is the exact requirement.Wewould like to integrate this technology
into the mixed excitation linear prediction (MELP) coder [20] to
improve the speechquality andobtain a further lowerbit-rate coder.
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